我从列表列表中创建了一个DataFrame:

table = [
    ['a',  '1.2',  '4.2' ],
    ['b',  '70',   '0.03'],
    ['x',  '5',    '0'   ],
]

df = pd.DataFrame(table)

如何将列转换为特定类型?在本例中,我想将列2和列3转换为浮点数。

是否有一种方法可以在转换到DataFrame时指定类型?还是先创建DataFrame,然后循环遍历列以更改每列的类型更好?理想情况下,我希望以动态的方式进行此操作,因为可能有数百个列,而我不想确切地指定哪些列属于哪种类型。我所能保证的是每一列都包含相同类型的值。


当前回答

用这个:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df

Out[16]:
  one  two three
0   a  1.2   4.2
1   b   70  0.03
2   x    5     0

df.dtypes

Out[17]:
one      object
two      object
three    object

df[['two', 'three']] = df[['two', 'three']].astype(float)

df.dtypes

Out[19]:
one       object
two      float64
three    float64

其他回答

当我只需要指定特定的列,并且我想要显式时,我使用(per pandas. datafframe .astype):

dataframe = dataframe.astype({'col_name_1':'int','col_name_2':'float64', etc. ...})

所以,使用原来的问题,但提供列名…

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['col_name_1', 'col_name_2', 'col_name_3'])
df = df.astype({'col_name_2':'float64', 'col_name_3':'float64'})

熊猫>= 1.0

下面这张图表总结了熊猫身上一些最重要的基因转换。

到字符串的转换是简单的.astype(str),图中没有显示。

“硬”与“软”转换

注意,这里的“转换”既可以指将文本数据转换为实际数据类型(硬转换),也可以指为对象列中的数据推断更合适的数据类型(软转换)。为了说明区别,我们来看一下

df = pd.DataFrame({'a': ['1', '2', '3'], 'b': [4, 5, 6]}, dtype=object)
df.dtypes

a    object
b    object
dtype: object

# Actually converts string to numeric - hard conversion
df.apply(pd.to_numeric).dtypes

a    int64
b    int64
dtype: object

# Infers better data types for object data - soft conversion
df.infer_objects().dtypes

a    object  # no change
b     int64
dtype: object

# Same as infer_objects, but converts to equivalent ExtensionType
    df.convert_dtypes().dtypes

创建两个数据框架,每个数据框架的列都有不同的数据类型,然后将它们附加在一起:

d1 = pd.DataFrame(columns=[ 'float_column' ], dtype=float)
d1 = d1.append(pd.DataFrame(columns=[ 'string_column' ], dtype=str))

结果

In[8}:  d1.dtypes
Out[8]:
float_column     float64
string_column     object
dtype: object

创建数据帧后,可以在第一列中使用浮点变量填充它,在第二列中使用字符串(或任何您想要的数据类型)填充它。

如果你想从字符串格式转换一列,我建议使用这段代码"

import pandas as pd
#My Test Data
data = {'Product': ['A','B', 'C','D'],
          'Price': ['210','250', '320','280']}
data


#Create Data Frame from My data df = pd.DataFrame(data)

#Convert to number
df['Price'] = pd.to_numeric(df['Price'])
df

Total = sum(df['Price'])
Total

否则,如果你要将一些列值转换为数字,我建议你先过滤你的值并保存在空数组中,然后转换为数字。我希望这段代码能解决您的问题。

下面是一个函数,它以一个DataFrame和一个列列表作为参数,并将列中的所有数据强制转换为数字。

# df is the DataFrame, and column_list is a list of columns as strings (e.g ["col1","col2","col3"])
# dependencies: pandas

def coerce_df_columns_to_numeric(df, column_list):
    df[column_list] = df[column_list].apply(pd.to_numeric, errors='coerce')

举个例子:

import pandas as pd

def coerce_df_columns_to_numeric(df, column_list):
    df[column_list] = df[column_list].apply(pd.to_numeric, errors='coerce')

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['col1','col2','col3'])

coerce_df_columns_to_numeric(df, ['col2','col3'])