有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
有没有比这个方法更简洁的方法来获取整数的位数?
int numDigits = String.valueOf(1000).length();
当前回答
由于以10为基数的整数的位数只是1 + truncate(log10(number)),您可以这样做:
public class Test {
public static void main(String[] args) {
final int number = 1234;
final int digits = 1 + (int)Math.floor(Math.log10(number));
System.out.println(digits);
}
}
被编辑是因为我的最后一次编辑修复了代码示例,但没有修复描述。
其他回答
最快的方法:分而治之。
Assuming your range is 0 to MAX_INT, then you have 1 to 10 digits. You can approach this interval using divide and conquer, with up to 4 comparisons per each input. First, you divide [1..10] into [1..5] and [6..10] with one comparison, and then each length 5 interval you divide using one comparison into one length 3 and one length 2 interval. The length 2 interval requires one more comparison (total 3 comparisons), the length 3 interval can be divided into length 1 interval (solution) and a length 2 interval. So, you need 3 or 4 comparisons.
没有除法,没有浮点运算,没有昂贵的对数,只有整数比较。
代码(长但快):
if (n < 100000) {
// 5 or less
if (n < 100){
// 1 or 2
if (n < 10)
return 1;
else
return 2;
} else {
// 3 or 4 or 5
if (n < 1000)
return 3;
else {
// 4 or 5
if (n < 10000)
return 4;
else
return 5;
}
}
} else {
// 6 or more
if (n < 10000000) {
// 6 or 7
if (n < 1000000)
return 6;
else
return 7;
} else {
// 8 to 10
if (n < 100000000)
return 8;
else {
// 9 or 10
if (n < 1000000000)
return 9;
else
return 10;
}
}
}
基准测试(在JVM预热之后)——查看下面的代码以了解基准测试是如何运行的:
基线方法(使用String.length): 2145毫秒 Log10方法:711ms = 3.02次 和基线一样快 重复除:2797ms = 0.77次 和基线一样快 分治:74ms = 28.99 时间和基线一样快
完整的代码:
public static void main(String[] args) throws Exception {
// validate methods:
for (int i = 0; i < 1000; i++)
if (method1(i) != method2(i))
System.out.println(i);
for (int i = 0; i < 1000; i++)
if (method1(i) != method3(i))
System.out.println(i + " " + method1(i) + " " + method3(i));
for (int i = 333; i < 2000000000; i += 1000)
if (method1(i) != method3(i))
System.out.println(i + " " + method1(i) + " " + method3(i));
for (int i = 0; i < 1000; i++)
if (method1(i) != method4(i))
System.out.println(i + " " + method1(i) + " " + method4(i));
for (int i = 333; i < 2000000000; i += 1000)
if (method1(i) != method4(i))
System.out.println(i + " " + method1(i) + " " + method4(i));
// work-up the JVM - make sure everything will be run in hot-spot mode
allMethod1();
allMethod2();
allMethod3();
allMethod4();
// run benchmark
Chronometer c;
c = new Chronometer(true);
allMethod1();
c.stop();
long baseline = c.getValue();
System.out.println(c);
c = new Chronometer(true);
allMethod2();
c.stop();
System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
c = new Chronometer(true);
allMethod3();
c.stop();
System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
c = new Chronometer(true);
allMethod4();
c.stop();
System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
}
private static int method1(int n) {
return Integer.toString(n).length();
}
private static int method2(int n) {
if (n == 0)
return 1;
return (int)(Math.log10(n) + 1);
}
private static int method3(int n) {
if (n == 0)
return 1;
int l;
for (l = 0 ; n > 0 ;++l)
n /= 10;
return l;
}
private static int method4(int n) {
if (n < 100000) {
// 5 or less
if (n < 100) {
// 1 or 2
if (n < 10)
return 1;
else
return 2;
} else {
// 3 or 4 or 5
if (n < 1000)
return 3;
else {
// 4 or 5
if (n < 10000)
return 4;
else
return 5;
}
}
} else {
// 6 or more
if (n < 10000000) {
// 6 or 7
if (n < 1000000)
return 6;
else
return 7;
} else {
// 8 to 10
if (n < 100000000)
return 8;
else {
// 9 or 10
if (n < 1000000000)
return 9;
else
return 10;
}
}
}
}
private static int allMethod1() {
int x = 0;
for (int i = 0; i < 1000; i++)
x = method1(i);
for (int i = 1000; i < 100000; i += 10)
x = method1(i);
for (int i = 100000; i < 1000000; i += 100)
x = method1(i);
for (int i = 1000000; i < 2000000000; i += 200)
x = method1(i);
return x;
}
private static int allMethod2() {
int x = 0;
for (int i = 0; i < 1000; i++)
x = method2(i);
for (int i = 1000; i < 100000; i += 10)
x = method2(i);
for (int i = 100000; i < 1000000; i += 100)
x = method2(i);
for (int i = 1000000; i < 2000000000; i += 200)
x = method2(i);
return x;
}
private static int allMethod3() {
int x = 0;
for (int i = 0; i < 1000; i++)
x = method3(i);
for (int i = 1000; i < 100000; i += 10)
x = method3(i);
for (int i = 100000; i < 1000000; i += 100)
x = method3(i);
for (int i = 1000000; i < 2000000000; i += 200)
x = method3(i);
return x;
}
private static int allMethod4() {
int x = 0;
for (int i = 0; i < 1000; i++)
x = method4(i);
for (int i = 1000; i < 100000; i += 10)
x = method4(i);
for (int i = 100000; i < 1000000; i += 100)
x = method4(i);
for (int i = 1000000; i < 2000000000; i += 200)
x = method4(i);
return x;
}
基准:
基线方法(String.length): 2145ms Log10方法:711ms =基线速度的3.02倍 重复除:2797ms =基线速度的0.77倍 分治:74毫秒= 28.99倍的基线速度
Edit
在我写完基准测试之后,我偷偷地看了一下Integer。toString来自Java 6,我发现它使用:
final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
99999999, 999999999, Integer.MAX_VALUE };
// Requires positive x
static int stringSize(int x) {
for (int i=0; ; i++)
if (x <= sizeTable[i])
return i+1;
}
我以我的分治方案为基准:
分治法:104毫秒 Java 6解决方案-迭代和比较:406ms
我的速度大约是Java 6解决方案的4倍。
这个递归方法呢?
private static int length = 0;
public static int length(int n) {
length++;
if((n / 10) < 10) {
length++;
} else {
length(n / 10);
}
return length;
}
简单的解决方案:
public class long_length {
long x,l=1,n;
for (n=10;n<x;n*=10){
if (x/n!=0){
l++;
}
}
System.out.print(l);
}
Two comments on your benchmark: Java is a complex environment, what with just-in-time compiling and garbage collection and so forth, so to get a fair comparison, whenever I run a benchmark, I always: (a) enclose the two tests in a loop that runs them in sequence 5 or 10 times. Quite often the runtime on the second pass through the loop is quite different from the first. And (b) After each "approach", I do a System.gc() to try to trigger a garbage collection. Otherwise, the first approach might generate a bunch of objects, but not quite enough to force a garbage collection, then the second approach creates a few objects, the heap is exhausted, and garbage collection runs. Then the second approach is "charged" for picking up the garbage left by the first approach. Very unfair!
也就是说,上述两种方法在本例中都没有产生显著差异。
不管有没有这些修改,我得到的结果和你完全不同。当我运行这个时,是的,toString方法给出的运行时间为6400到6600 millis,而log方法给出的运行时间为20,000到20,400 millis。对数方法对我来说不是稍微快一点,而是慢了3倍。
请注意,这两种方法涉及非常不同的代价,所以这并不完全令人震惊:toString方法将创建许多必须清理的临时对象,而log方法需要更密集的计算。因此,可能区别在于,在内存较少的机器上,toString需要更多的垃圾收集回合,而在处理器较慢的机器上,额外的log计算将更加痛苦。
我还尝试了第三种方法。我写了这个小函数:
static int numlength(int n)
{
if (n == 0) return 1;
int l;
n=Math.abs(n);
for (l=0;n>0;++l)
n/=10;
return l;
}
在我的机器上,它运行在1600到1900毫厘之间——不到toString方法的1/3,log方法的1/10。
如果您的数字范围很广,您可以通过开始除以1000或1,000,000来进一步加快速度,以减少循环的次数。我还没玩过。
我们可以使用递归循环来实现这一点
public static int digitCount(int numberInput, int i) {
while (numberInput > 0) {
i++;
numberInput = numberInput / 10;
digitCount(numberInput, i);
}
return i;
}
public static void printString() {
int numberInput = 1234567;
int digitCount = digitCount(numberInput, 0);
System.out.println("Count of digit in ["+numberInput+"] is ["+digitCount+"]");
}