为什么NaN值的比较与所有其他值的比较行为不同? 也就是说,与运算符==,<=,>=,<,>的所有比较,其中一个或两个值都是NaN,返回false,与所有其他值的行为相反。

我认为这在某种程度上简化了数值计算,但我找不到一个明确的原因,甚至在Kahan的《IEEE 754状态讲义》中也找不到,他详细讨论了其他设计决策。

在进行简单的数据处理时,这种异常行为会造成麻烦。例如,当在C程序中对记录列表w.r.t.某个实值字段进行排序时,我需要编写额外的代码来处理NaN作为最大元素,否则排序算法可能会变得混乱。

编辑: 到目前为止,所有的答案都认为比较nan是没有意义的。

我同意,但这并不意味着正确答案是错误的, 而是一个非布尔型(NaB),幸运的是它并不存在。

所以在我看来,选择返回真或假进行比较是随意的, 对于一般的数据处理来说,如果它符合通常的规律,那将是有利的 (==的反身性,<,==,>的三分), 以免依赖这些定律的数据结构变得混乱。

所以我要求的是打破这些定律的一些具体好处,而不仅仅是哲学推理。

编辑2: 我想我现在明白为什么让NaN最大是一个坏主意了,它会搞砸上限的计算。

NaN != NaN可能是可取的,以避免检测循环中的收敛,例如

while (x != oldX) {
    oldX = x;
    x = better_approximation(x);
}

但是最好是通过比较小极限下的绝对差来写。 所以恕我直言,这是一个相对较弱的论点,打破自反性在NaN。


当前回答

它看起来很奇怪,因为大多数允许nan的编程环境也不允许3值逻辑。如果你加入3值逻辑,它就会变得一致:

(2.7 == 2.7) = true (2.7 == 2.6) = false (2.7 == NaN) =未知 (NaN == NaN) =未知

甚至。net也不提供bool类型?operator==(double v1, double v2)运算符,所以你仍然被愚蠢的(NaN == NaN) = false结果所困扰。

其他回答

我猜NaN(不是一个数字)的意思就是:这不是一个数字,因此比较它是没有意义的。

这有点像SQL中带有空操作数的算术:它们的结果都为空。

浮点数的比较比较数值。因此,它们不能用于非数值值。因此,NaN不能在数字意义上进行比较。

NaN可以被认为是一个未定义的状态/数。类似于0/0未定义或根号(-3)的概念(在浮点数所在的实数系统中)。

NaN被用作这种未定义状态的一种占位符。从数学上讲,未定义并不等于未定义。你也不能说一个未定义值大于或小于另一个未定义值。因此,所有比较返回false。

这种行为在比较根号(-3)和根号(-2)的情况下也很有利。它们都会返回NaN,但它们并不等效,即使它们返回相同的值。因此,在处理NaN时,具有相等总是返回false是理想的行为。

因为数学是数字“仅仅存在”的领域。 在计算中,你必须初始化这些数字,并根据需要保持它们的状态。 在过去的日子里,内存初始化的工作方式是你永远无法依赖的。你永远不能允许自己这样想“哦,它会一直用0xCD初始化,我的算法不会坏”。

所以你需要合适的非混合溶剂,足够粘稠,不会让你的算法被卷入和破坏。 涉及数字的优秀算法大多使用关系,而那些if()关系将被省略。

这只是油脂,你可以在创建新变量,而不是从计算机内存编程随机地狱。不管你的算法是什么,都不会崩溃。

接下来,当您仍然突然发现您的算法正在生成nan时,可以将其清除,一次查看每个分支。同样,“总是错误”的规则在这方面很有帮助。

它看起来很奇怪,因为大多数允许nan的编程环境也不允许3值逻辑。如果你加入3值逻辑,它就会变得一致:

(2.7 == 2.7) = true (2.7 == 2.6) = false (2.7 == NaN) =未知 (NaN == NaN) =未知

甚至。net也不提供bool类型?operator==(double v1, double v2)运算符,所以你仍然被愚蠢的(NaN == NaN) = false结果所困扰。

While I agree that comparisons of NaN with any real number should be unordered, I think there is just cause for comparing NaN with itself. How, for example does one discover the difference between signaling NaNs and quiet NaNs? If we think of the signals as a set of Boolean values (i.e. a bit-vector) one might well ask whether the bit-vectors are the same or different and order the sets accordingly. For example, on decoding a maximum biased exponent, if the significand were left shifted so as to align the most significant bit of the significand on the most significant bit of the binary format, a negative value would be a quiet NaN and any positive value would be a signaling NaN. Zero of course is reserved for infinity and the comparison would be unordered. MSB alignment would allow for the direct comparison of signals even from different binary formats. Two NaNs with the same set of signals would therefore be equivalent and give meaning to equality.