下面的函数foo返回一个字符串'foo'。我如何才能获得从线程的目标返回的值'foo' ?

from threading import Thread

def foo(bar):
    print('hello {}'.format(bar))
    return 'foo'
    
thread = Thread(target=foo, args=('world!',))
thread.start()
return_value = thread.join()

上面所示的“一种明显的方法”不起作用:thread.join()返回None。


当前回答

定义你的目标 1)采取一个论点q 2)用q.put(foo)替换return foo的任何语句;返回

一个函数

def func(a):
    ans = a * a
    return ans

将成为

def func(a, q):
    ans = a * a
    q.put(ans)
    return

然后你就可以这样做了

from Queue import Queue
from threading import Thread

ans_q = Queue()
arg_tups = [(i, ans_q) for i in xrange(10)]

threads = [Thread(target=func, args=arg_tup) for arg_tup in arg_tups]
_ = [t.start() for t in threads]
_ = [t.join() for t in threads]
results = [q.get() for _ in xrange(len(threads))]

你可以使用函数装饰器/包装器来实现它,这样你就可以使用现有的函数作为目标,而不需要修改它们,但要遵循这个基本方案。

其他回答

另一个不需要更改现有代码的解决方案:

import Queue             # Python 2.x
#from queue import Queue # Python 3.x

from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)     # Python 2.x
    #print('hello {0}'.format(bar))   # Python 3.x
    return 'foo'

que = Queue.Queue()      # Python 2.x
#que = Queue()           # Python 3.x

t = Thread(target=lambda q, arg1: q.put(foo(arg1)), args=(que, 'world!'))
t.start()
t.join()
result = que.get()
print result             # Python 2.x
#print(result)           # Python 3.x

它也可以很容易地调整到多线程环境:

import Queue             # Python 2.x
#from queue import Queue # Python 3.x
from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)     # Python 2.x
    #print('hello {0}'.format(bar))   # Python 3.x
    return 'foo'

que = Queue.Queue()      # Python 2.x
#que = Queue()           # Python 3.x

threads_list = list()

t = Thread(target=lambda q, arg1: q.put(foo(arg1)), args=(que, 'world!'))
t.start()
threads_list.append(t)

# Add more threads here
...
threads_list.append(t2)
...
threads_list.append(t3)
...

# Join all the threads
for t in threads_list:
    t.join()

# Check thread's return value
while not que.empty():
    result = que.get()
    print result         # Python 2.x
    #print(result)       # Python 3.x

在Python 3.2+中,stdlib concurrent。futures模块为线程提供了一个更高级别的API,包括将返回值或异常从工作线程传递回主线程:

import concurrent.futures

def foo(bar):
    print('hello {}'.format(bar))
    return 'foo'

with concurrent.futures.ThreadPoolExecutor() as executor:
    future = executor.submit(foo, 'world!')
    return_value = future.result()
    print(return_value)

Parris / kindall的answer join/return answer移植到Python 3:

from threading import Thread

def foo(bar):
    print('hello {0}'.format(bar))
    return "foo"

class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None):
        Thread.__init__(self, group, target, name, args, kwargs, daemon=daemon)

        self._return = None

    def run(self):
        if self._target is not None:
            self._return = self._target(*self._args, **self._kwargs)

    def join(self):
        Thread.join(self)
        return self._return


twrv = ThreadWithReturnValue(target=foo, args=('world!',))

twrv.start()
print(twrv.join())   # prints foo

注意,Thread类在Python 3中实现的方式不同。

FWIW,多处理模块使用Pool类提供了一个很好的接口。如果您希望坚持使用线程而不是进程,可以直接使用multiprocessing.pool.ThreadPool类作为替代。

def foo(bar, baz):
  print 'hello {0}'.format(bar)
  return 'foo' + baz

from multiprocessing.pool import ThreadPool
pool = ThreadPool(processes=1)

async_result = pool.apply_async(foo, ('world', 'foo')) # tuple of args for foo

# do some other stuff in the main process

return_val = async_result.get()  # get the return value from your function.

考虑到@iman对@JakeBiesinger回答的评论,我重新组合了它,使其具有不同数量的线程:

from multiprocessing.pool import ThreadPool

def foo(bar, baz):
    print 'hello {0}'.format(bar)
    return 'foo' + baz

numOfThreads = 3 
results = []

pool = ThreadPool(numOfThreads)

for i in range(0, numOfThreads):
    results.append(pool.apply_async(foo, ('world', 'foo'))) # tuple of args for foo)

# do some other stuff in the main process
# ...
# ...

results = [r.get() for r in results]
print results

pool.close()
pool.join()