下面的函数foo返回一个字符串'foo'。我如何才能获得从线程的目标返回的值'foo' ?

from threading import Thread

def foo(bar):
    print('hello {}'.format(bar))
    return 'foo'
    
thread = Thread(target=foo, args=('world!',))
thread.start()
return_value = thread.join()

上面所示的“一种明显的方法”不起作用:thread.join()返回None。


当前回答

使用队列:

import threading, queue

def calc_square(num, out_queue1):
  l = []
  for x in num:
    l.append(x*x)
  out_queue1.put(l)


arr = [1,2,3,4,5,6,7,8,9,10]
out_queue1=queue.Queue()
t1=threading.Thread(target=calc_square, args=(arr,out_queue1))
t1.start()
t1.join()
print (out_queue1.get())

其他回答

定义你的目标 1)采取一个论点q 2)用q.put(foo)替换return foo的任何语句;返回

一个函数

def func(a):
    ans = a * a
    return ans

将成为

def func(a, q):
    ans = a * a
    q.put(ans)
    return

然后你就可以这样做了

from Queue import Queue
from threading import Thread

ans_q = Queue()
arg_tups = [(i, ans_q) for i in xrange(10)]

threads = [Thread(target=func, args=arg_tup) for arg_tup in arg_tups]
_ = [t.start() for t in threads]
_ = [t.join() for t in threads]
results = [q.get() for _ in xrange(len(threads))]

你可以使用函数装饰器/包装器来实现它,这样你就可以使用现有的函数作为目标,而不需要修改它们,但要遵循这个基本方案。

Kindall在Python3中的回答

class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs={}, *, daemon=None):
        Thread.__init__(self, group, target, name, args, kwargs, daemon)
        self._return = None 

    def run(self):
        try:
            if self._target:
                self._return = self._target(*self._args, **self._kwargs)
        finally:
            del self._target, self._args, self._kwargs 

    def join(self,timeout=None):
        Thread.join(self,timeout)
        return self._return

我发现做到这一点的最短和最简单的方法是利用Python类及其动态属性。您可以使用threading.current_thread()从派生线程的上下文中检索当前线程,并将返回值赋给一个属性。

import threading

def some_target_function():
    # Your code here.
    threading.current_thread().return_value = "Some return value."

your_thread = threading.Thread(target=some_target_function)
your_thread.start()
your_thread.join()

return_value = your_thread.return_value
print(return_value)

我对这个问题的解决方案是将函数和线程包装在一个类中。不需要使用池、队列或c类型变量传递。它也是非阻塞的。而是检查状态。参见代码末尾如何使用它的示例。

import threading

class ThreadWorker():
    '''
    The basic idea is given a function create an object.
    The object can then run the function in a thread.
    It provides a wrapper to start it,check its status,and get data out the function.
    '''
    def __init__(self,func):
        self.thread = None
        self.data = None
        self.func = self.save_data(func)

    def save_data(self,func):
        '''modify function to save its returned data'''
        def new_func(*args, **kwargs):
            self.data=func(*args, **kwargs)

        return new_func

    def start(self,params):
        self.data = None
        if self.thread is not None:
            if self.thread.isAlive():
                return 'running' #could raise exception here

        #unless thread exists and is alive start or restart it
        self.thread = threading.Thread(target=self.func,args=params)
        self.thread.start()
        return 'started'

    def status(self):
        if self.thread is None:
            return 'not_started'
        else:
            if self.thread.isAlive():
                return 'running'
            else:
                return 'finished'

    def get_results(self):
        if self.thread is None:
            return 'not_started' #could return exception
        else:
            if self.thread.isAlive():
                return 'running'
            else:
                return self.data

def add(x,y):
    return x +y

add_worker = ThreadWorker(add)
print add_worker.start((1,2,))
print add_worker.status()
print add_worker.get_results()

另一个不需要更改现有代码的解决方案:

import Queue             # Python 2.x
#from queue import Queue # Python 3.x

from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)     # Python 2.x
    #print('hello {0}'.format(bar))   # Python 3.x
    return 'foo'

que = Queue.Queue()      # Python 2.x
#que = Queue()           # Python 3.x

t = Thread(target=lambda q, arg1: q.put(foo(arg1)), args=(que, 'world!'))
t.start()
t.join()
result = que.get()
print result             # Python 2.x
#print(result)           # Python 3.x

它也可以很容易地调整到多线程环境:

import Queue             # Python 2.x
#from queue import Queue # Python 3.x
from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)     # Python 2.x
    #print('hello {0}'.format(bar))   # Python 3.x
    return 'foo'

que = Queue.Queue()      # Python 2.x
#que = Queue()           # Python 3.x

threads_list = list()

t = Thread(target=lambda q, arg1: q.put(foo(arg1)), args=(que, 'world!'))
t.start()
threads_list.append(t)

# Add more threads here
...
threads_list.append(t2)
...
threads_list.append(t3)
...

# Join all the threads
for t in threads_list:
    t.join()

# Check thread's return value
while not que.empty():
    result = que.get()
    print result         # Python 2.x
    #print(result)       # Python 3.x