下面的函数foo返回一个字符串'foo'。我如何才能获得从线程的目标返回的值'foo' ?

from threading import Thread

def foo(bar):
    print('hello {}'.format(bar))
    return 'foo'
    
thread = Thread(target=foo, args=('world!',))
thread.start()
return_value = thread.join()

上面所示的“一种明显的方法”不起作用:thread.join()返回None。


当前回答

join总是返回None,我认为你应该子类化Thread来处理返回代码等。

其他回答

我见过的一种方法是将一个可变对象(如列表或字典)传递给线程的构造函数,同时传递一个索引或其他某种类型的标识符。然后线程可以将结果存储在该对象的专用槽中。例如:

def foo(bar, result, index):
    print 'hello {0}'.format(bar)
    result[index] = "foo"

from threading import Thread

threads = [None] * 10
results = [None] * 10

for i in range(len(threads)):
    threads[i] = Thread(target=foo, args=('world!', results, i))
    threads[i].start()

# do some other stuff

for i in range(len(threads)):
    threads[i].join()

print " ".join(results)  # what sound does a metasyntactic locomotive make?

如果你真的想要join()返回被调用函数的返回值,你可以用Thread子类来实现,如下所示:

from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)
    return "foo"

class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs, Verbose)
        self._return = None
    def run(self):
        if self._Thread__target is not None:
            self._return = self._Thread__target(*self._Thread__args,
                                                **self._Thread__kwargs)
    def join(self):
        Thread.join(self)
        return self._return

twrv = ThreadWithReturnValue(target=foo, args=('world!',))

twrv.start()
print twrv.join()   # prints foo

这有点麻烦,因为一些名称混乱,它访问特定于线程实现的“私有”数据结构……但它确实有效。

对于Python 3:

class ThreadWithReturnValue(Thread):
    
    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs)
        self._return = None

    def run(self):
        if self._target is not None:
            self._return = self._target(*self._args,
                                                **self._kwargs)
    def join(self, *args):
        Thread.join(self, *args)
        return self._return

您可以在线程函数的作用域之上定义一个可变变量,并将结果添加到该变量中。(我还修改了代码,使其与python3兼容)

returns = {}
def foo(bar):
    print('hello {0}'.format(bar))
    returns[bar] = 'foo'

from threading import Thread
t = Thread(target=foo, args=('world!',))
t.start()
t.join()
print(returns)

返回{'world!”:“foo”}

如果使用函数input作为结果字典的键,则保证每个惟一的输入都在结果中给出一个条目

一种常见的解决方案是用装饰器来包装函数foo

result = queue.Queue()

def task_wrapper(*args):
    result.put(target(*args))

那么整个代码可能是这样的

result = queue.Queue()

def task_wrapper(*args):
    result.put(target(*args))

threads = [threading.Thread(target=task_wrapper, args=args) for args in args_list]

for t in threads:
    t.start()
    while(True):
        if(len(threading.enumerate()) < max_num):
            break
for t in threads:
    t.join()
return result

Note

一个重要的问题是返回值可能是无序的。 (事实上,返回值不一定保存到队列中,因为您可以选择任意线程安全的数据结构)

我正在使用这个包装器,它可以轻松地将任何函数转换为在线程中运行-照顾它的返回值或异常。它不会增加队列开销。

def threading_func(f):
    """Decorator for running a function in a thread and handling its return
    value or exception"""
    def start(*args, **kw):
        def run():
            try:
                th.ret = f(*args, **kw)
            except:
                th.exc = sys.exc_info()
        def get(timeout=None):
            th.join(timeout)
            if th.exc:
                raise th.exc[0], th.exc[1], th.exc[2] # py2
                ##raise th.exc[1] #py3                
            return th.ret
        th = threading.Thread(None, run)
        th.exc = None
        th.get = get
        th.start()
        return th
    return start

用法示例

def f(x):
    return 2.5 * x
th = threading_func(f)(4)
print("still running?:", th.is_alive())
print("result:", th.get(timeout=1.0))

@threading_func
def th_mul(a, b):
    return a * b
th = th_mul("text", 2.5)

try:
    print(th.get())
except TypeError:
    print("exception thrown ok.")

线程模块注意事项

线程函数的舒适返回值和异常处理是“python”的常见需求,而且threading模块应该已经提供了——可能直接在标准Thread类中。对于简单的任务,ThreadPool有太多的开销——3个管理线程,很多官僚主义。不幸的是,线程的布局最初是从Java中复制的——例如,从仍然无用的构造函数参数组1 (!)

使用队列:

import threading, queue

def calc_square(num, out_queue1):
  l = []
  for x in num:
    l.append(x*x)
  out_queue1.put(l)


arr = [1,2,3,4,5,6,7,8,9,10]
out_queue1=queue.Queue()
t1=threading.Thread(target=calc_square, args=(arr,out_queue1))
t1.start()
t1.join()
print (out_queue1.get())