如何在Python中实现通用树?这有内置的数据结构吗?
当前回答
bigtree是一个Python树实现,集成了Python列表、字典和pandas DataFrame。它是python式的,易于学习,并可扩展到许多类型的工作流。
bigtree有很多组成部分,即
从列表、字典和熊猫数据框架构建树 遍历树 修改树(移位/复制节点) 搜索树 辅助方法(克隆树,修剪树,获取两个树之间的差异) 导出树(打印到控制台,导出树到字典,熊猫数据框架,图像等) 其他树结构:二叉树! 其他图结构:有向无环图(dag)!
我还能说什么呢……是的,这也是有据可查的。
一些例子:
from bigtree import list_to_tree, tree_to_dict, tree_to_dot
# Create tree from list, print tree
root = list_to_tree(["a/b/d", "a/c"])
print_tree(root)
# a
# ├── b
# │ └── d
# └── c
# Query tree
root.children
# (Node(/a/b, ), Node(/a/c, ))
# Export tree to dictionary / image
tree_to_dict(root)
# {
# '/a': {'name': 'a'},
# '/a/b': {'name': 'b'},
# '/a/b/d': {'name': 'd'},
# '/a/c': {'name': 'c'}
# }
graph = tree_to_dot(root, node_colour="gold")
graph.write_png("tree.png")
来源/免责声明:我是bigtree的创造者;)
其他回答
class Node:
"""
Class Node
"""
def __init__(self, value):
self.left = None
self.data = value
self.right = None
class Tree:
"""
Class tree will provide a tree as well as utility functions.
"""
def createNode(self, data):
"""
Utility function to create a node.
"""
return Node(data)
def insert(self, node , data):
"""
Insert function will insert a node into tree.
Duplicate keys are not allowed.
"""
#if tree is empty , return a root node
if node is None:
return self.createNode(data)
# if data is smaller than parent , insert it into left side
if data < node.data:
node.left = self.insert(node.left, data)
elif data > node.data:
node.right = self.insert(node.right, data)
return node
def search(self, node, data):
"""
Search function will search a node into tree.
"""
# if root is None or root is the search data.
if node is None or node.data == data:
return node
if node.data < data:
return self.search(node.right, data)
else:
return self.search(node.left, data)
def deleteNode(self,node,data):
"""
Delete function will delete a node into tree.
Not complete , may need some more scenarion that we can handle
Now it is handling only leaf.
"""
# Check if tree is empty.
if node is None:
return None
# searching key into BST.
if data < node.data:
node.left = self.deleteNode(node.left, data)
elif data > node.data:
node.right = self.deleteNode(node.right, data)
else: # reach to the node that need to delete from BST.
if node.left is None and node.right is None:
del node
if node.left == None:
temp = node.right
del node
return temp
elif node.right == None:
temp = node.left
del node
return temp
return node
def traverseInorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traverseInorder(root.left)
print(root.data)
self.traverseInorder(root.right)
def traversePreorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
print(root.data)
self.traversePreorder(root.left)
self.traversePreorder(root.right)
def traversePostorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traversePostorder(root.left)
self.traversePostorder(root.right)
print(root.data)
def main():
root = None
tree = Tree()
root = tree.insert(root, 10)
print(root)
tree.insert(root, 20)
tree.insert(root, 30)
tree.insert(root, 40)
tree.insert(root, 70)
tree.insert(root, 60)
tree.insert(root, 80)
print("Traverse Inorder")
tree.traverseInorder(root)
print("Traverse Preorder")
tree.traversePreorder(root)
print("Traverse Postorder")
tree.traversePostorder(root)
if __name__ == "__main__":
main()
如果您已经在使用networkx库,那么您可以使用它实现一个树。
NetworkX是一个用于创建、操作和研究的Python包 复杂网络的结构、动力学和功能。
因为“树”是(通常根)连接无环图的另一个术语,这些在NetworkX中被称为“树状图”。
你可能想要实现一个平面树(又名有序树),其中每个兄弟姐妹都有一个唯一的秩,这通常通过标记节点来完成。
然而,图语言看起来不同于树语言,“扎根”树的方法通常是使用有向图,因此,虽然有一些非常酷的功能和相应的可视化可用,但如果你还没有使用networkx,它可能不是一个理想的选择。
一个构建树的例子:
import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('B', 'D')
G.add_edge('A', 'E')
G.add_edge('E', 'F')
该库允许每个节点是任何可哈希对象,并且不限制每个节点拥有的子节点的数量。
另一个基于Bruno回答的树的实现:
class Node:
def __init__(self):
self.name: str = ''
self.children: List[Node] = []
self.parent: Node = self
def __getitem__(self, i: int) -> 'Node':
return self.children[i]
def add_child(self):
child = Node()
self.children.append(child)
child.parent = self
return child
def __str__(self) -> str:
def _get_character(x, left, right) -> str:
if x < left:
return '/'
elif x >= right:
return '\\'
else:
return '|'
if len(self.children):
children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
max_height: int = max(map(len, children_lines))
total_width: int = sum(widths) + len(widths) - 1
left: int = (total_width - len(self.name) + 1) // 2
right: int = left + len(self.name)
return '\n'.join((
self.name.center(total_width),
' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
widths, accumulate(widths, add))),
*map(
lambda row: ' '.join(map(
lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
children_lines)),
range(max_height))))
else:
return self.name
还有一个如何使用它的例子:
tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)
它应该输出:
Root node / / \ Child node 0 Child node 1 Child node 2 | / \ Grandchild 1.0 Grandchild 2.0 Grandchild 2.1
我已经在我的网站https://web.archive.org/web/20120723175438/www.quesucede.com/page/show/id/python_3_tree_implementation上发布了一个Python 3树的实现
代码如下:
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name,
self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name,
self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes
if node.identifier is identifier]
if __name__ == "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
您可以使用Python中的dataclasses模块创建Tree数据结构。
iter方法可用于使树可迭代,允许您通过改变yield语句的顺序来遍历树。
contains方法可用于检查树中是否存在特定值。
from dataclasses import dataclass
# A
# / \
# B C
# / \ \
# D E F
# / \
# G H
@dataclass
class Node:
data: str
left: Node = None
right: Node = None
def __iter__(self):
if self.left:
yield from self.left
yield self
if self.right:
yield from self.right
def __contains__(self, other):
for node in self:
if node.data == other:
return True
return False
t = Node(
'A',
Node(
'B',
Node(
'D',
Node('G'),
Node('H'),
),
Node('E'),
),
Node(
'C',
right=Node('F'),
),
)
assert ('A' in t) is True
assert ('I' in t) is not True
for node in t:
print(node.data, ' -> ', end='')
# G -> D -> H -> B -> E -> A -> C -> F ->
推荐文章
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件