如何在Python中实现通用树?这有内置的数据结构吗?
当前回答
bigtree是一个Python树实现,集成了Python列表、字典和pandas DataFrame。它是python式的,易于学习,并可扩展到许多类型的工作流。
bigtree有很多组成部分,即
从列表、字典和熊猫数据框架构建树 遍历树 修改树(移位/复制节点) 搜索树 辅助方法(克隆树,修剪树,获取两个树之间的差异) 导出树(打印到控制台,导出树到字典,熊猫数据框架,图像等) 其他树结构:二叉树! 其他图结构:有向无环图(dag)!
我还能说什么呢……是的,这也是有据可查的。
一些例子:
from bigtree import list_to_tree, tree_to_dict, tree_to_dot
# Create tree from list, print tree
root = list_to_tree(["a/b/d", "a/c"])
print_tree(root)
# a
# ├── b
# │ └── d
# └── c
# Query tree
root.children
# (Node(/a/b, ), Node(/a/c, ))
# Export tree to dictionary / image
tree_to_dict(root)
# {
# '/a': {'name': 'a'},
# '/a/b': {'name': 'b'},
# '/a/b/d': {'name': 'd'},
# '/a/c': {'name': 'c'}
# }
graph = tree_to_dot(root, node_colour="gold")
graph.write_png("tree.png")
来源/免责声明:我是bigtree的创造者;)
其他回答
如果有人需要一个更简单的方法,树只是一个递归嵌套的列表(因为set是不可哈希的):
[root, [child_1, [[child_11, []], [child_12, []]], [child_2, []]]]
每个分支都是一对:[object, [children]] 每个叶子是一对:[object, []]
但是如果你需要一个带有方法的类,你可以使用任何树。
泛型树是一个具有零个或多个子节点的节点,每个子节点都是一个合适的(树)节点。它与二叉树不同,它们是不同的数据结构,尽管它们都有一些相同的术语。
Python中没有任何用于泛型树的内置数据结构,但很容易通过类实现。
class Tree(object):
"Generic tree node."
def __init__(self, name='root', children=None):
self.name = name
self.children = []
if children is not None:
for child in children:
self.add_child(child)
def __repr__(self):
return self.name
def add_child(self, node):
assert isinstance(node, Tree)
self.children.append(node)
# *
# /|\
# 1 2 +
# / \
# 3 4
t = Tree('*', [Tree('1'),
Tree('2'),
Tree('+', [Tree('3'),
Tree('4')])])
class Node:
"""
Class Node
"""
def __init__(self, value):
self.left = None
self.data = value
self.right = None
class Tree:
"""
Class tree will provide a tree as well as utility functions.
"""
def createNode(self, data):
"""
Utility function to create a node.
"""
return Node(data)
def insert(self, node , data):
"""
Insert function will insert a node into tree.
Duplicate keys are not allowed.
"""
#if tree is empty , return a root node
if node is None:
return self.createNode(data)
# if data is smaller than parent , insert it into left side
if data < node.data:
node.left = self.insert(node.left, data)
elif data > node.data:
node.right = self.insert(node.right, data)
return node
def search(self, node, data):
"""
Search function will search a node into tree.
"""
# if root is None or root is the search data.
if node is None or node.data == data:
return node
if node.data < data:
return self.search(node.right, data)
else:
return self.search(node.left, data)
def deleteNode(self,node,data):
"""
Delete function will delete a node into tree.
Not complete , may need some more scenarion that we can handle
Now it is handling only leaf.
"""
# Check if tree is empty.
if node is None:
return None
# searching key into BST.
if data < node.data:
node.left = self.deleteNode(node.left, data)
elif data > node.data:
node.right = self.deleteNode(node.right, data)
else: # reach to the node that need to delete from BST.
if node.left is None and node.right is None:
del node
if node.left == None:
temp = node.right
del node
return temp
elif node.right == None:
temp = node.left
del node
return temp
return node
def traverseInorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traverseInorder(root.left)
print(root.data)
self.traverseInorder(root.right)
def traversePreorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
print(root.data)
self.traversePreorder(root.left)
self.traversePreorder(root.right)
def traversePostorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traversePostorder(root.left)
self.traversePostorder(root.right)
print(root.data)
def main():
root = None
tree = Tree()
root = tree.insert(root, 10)
print(root)
tree.insert(root, 20)
tree.insert(root, 30)
tree.insert(root, 40)
tree.insert(root, 70)
tree.insert(root, 60)
tree.insert(root, 80)
print("Traverse Inorder")
tree.traverseInorder(root)
print("Traverse Preorder")
tree.traversePreorder(root)
print("Traverse Postorder")
tree.traversePostorder(root)
if __name__ == "__main__":
main()
您可以使用Python中的dataclasses模块创建Tree数据结构。
iter方法可用于使树可迭代,允许您通过改变yield语句的顺序来遍历树。
contains方法可用于检查树中是否存在特定值。
from dataclasses import dataclass
# A
# / \
# B C
# / \ \
# D E F
# / \
# G H
@dataclass
class Node:
data: str
left: Node = None
right: Node = None
def __iter__(self):
if self.left:
yield from self.left
yield self
if self.right:
yield from self.right
def __contains__(self, other):
for node in self:
if node.data == other:
return True
return False
t = Node(
'A',
Node(
'B',
Node(
'D',
Node('G'),
Node('H'),
),
Node('E'),
),
Node(
'C',
right=Node('F'),
),
)
assert ('A' in t) is True
assert ('I' in t) is not True
for node in t:
print(node.data, ' -> ', end='')
# G -> D -> H -> B -> E -> A -> C -> F ->
我使用嵌套字典实现了树。这很容易做到,而且对我来说,它在相当大的数据集上很有效。我在下面发布了一个示例,你可以在谷歌代码中看到更多
def addBallotToTree(self, tree, ballotIndex, ballot=""):
"""Add one ballot to the tree.
The root of the tree is a dictionary that has as keys the indicies of all
continuing and winning candidates. For each candidate, the value is also
a dictionary, and the keys of that dictionary include "n" and "bi".
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
If candidate c is a winning candidate, then that portion of the tree is
expanded to indicate the breakdown of the subsequently ranked candidates.
In this situation, additional keys are added to the tree[c] dictionary
corresponding to subsequently ranked candidates.
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
tree[c][d]["n"] is the number of ballots that rank c first and d second.
tree[c][d]["bi"] is a list of the corresponding ballot indices.
Where the second ranked candidates is also a winner, then the tree is
expanded to the next level.
Losing candidates are ignored and treated as if they do not appear on the
ballots. For example, tree[c][d]["n"] is the total number of ballots
where candidate c is the first non-losing candidate, c is a winner, and
d is the next non-losing candidate. This will include the following
ballots, where x represents a losing candidate:
[c d]
[x c d]
[c x d]
[x c x x d]
During the count, the tree is dynamically updated as candidates change
their status. The parameter "tree" to this method may be the root of the
tree or may be a sub-tree.
"""
if ballot == "":
# Add the complete ballot to the tree
weight, ballot = self.b.getWeightedBallot(ballotIndex)
else:
# When ballot is not "", we are adding a truncated ballot to the tree,
# because a higher-ranked candidate is a winner.
weight = self.b.getWeight(ballotIndex)
# Get the top choice among candidates still in the running
# Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
# we are looking for the top choice over a truncated ballot.
for c in ballot:
if c in self.continuing | self.winners:
break # c is the top choice so stop
else:
c = None # no candidates left on this ballot
if c is None:
# This will happen if the ballot contains only winning and losing
# candidates. The ballot index will not need to be transferred
# again so it can be thrown away.
return
# Create space if necessary.
if not tree.has_key(c):
tree[c] = {}
tree[c]["n"] = 0
tree[c]["bi"] = []
tree[c]["n"] += weight
if c in self.winners:
# Because candidate is a winner, a portion of the ballot goes to
# the next candidate. Pass on a truncated ballot so that the same
# candidate doesn't get counted twice.
i = ballot.index(c)
ballot2 = ballot[i+1:]
self.addBallotToTree(tree[c], ballotIndex, ballot2)
else:
# Candidate is in continuing so we stop here.
tree[c]["bi"].append(ballotIndex)
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 为什么java.util.Set没有get(int index)?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录