如何在Python中实现通用树?这有内置的数据结构吗?
当前回答
并没有内置树,但是可以通过从List继承Node类型并编写遍历方法来轻松地构造一个树。如果你这样做,我发现平分法很有用。
您还可以浏览PyPi上的许多实现。
如果我没记错的话,Python标准库不包含树数据结构,原因和。net基类库不包含树数据结构是一样的:内存的局部性降低了,导致缓存丢失更多。在现代处理器上,将大量内存放入缓存通常会更快,而“指针丰富”的数据结构会抵消这种好处。
其他回答
class Tree(dict):
"""A tree implementation using python's autovivification feature."""
def __missing__(self, key):
value = self[key] = type(self)()
return value
#cast a (nested) dict to a (nested) Tree class
def __init__(self, data={}):
for k, data in data.items():
if isinstance(data, dict):
self[k] = type(self)(data)
else:
self[k] = data
作为一个字典,但提供尽可能多的嵌套字典。 试试下面的方法:
your_tree = Tree()
your_tree['a']['1']['x'] = '@'
your_tree['a']['1']['y'] = '#'
your_tree['a']['2']['x'] = '$'
your_tree['a']['3'] = '%'
your_tree['b'] = '*'
将传递一个嵌套的字典…就像树一样。
{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}
... 如果你已经有字典了,它会把每一层都投射到一棵树上:
d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)
print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch
这样,你就可以随心所欲地编辑/添加/删除每个词典级别。 遍历等所有dict方法仍然适用。
Treelib也很方便完成这项任务。文档可以在treelib找到。
from treelib import Node, Tree
tree = Tree() # creating an object
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent="harry") #adding nodes
tree.create_node("Bill", "bill", parent="harry")
tree.create_node("Diane", "diane", parent="jane")
tree.create_node("Mary", "mary", parent="diane")
tree.create_node("Mark", "mark", parent="jane")
tree.show()
Harry
├── Bill
└── Jane
├── Diane
│ └── Mary
└── Mark
如果您已经在使用networkx库,那么您可以使用它实现一个树。
NetworkX是一个用于创建、操作和研究的Python包 复杂网络的结构、动力学和功能。
因为“树”是(通常根)连接无环图的另一个术语,这些在NetworkX中被称为“树状图”。
你可能想要实现一个平面树(又名有序树),其中每个兄弟姐妹都有一个唯一的秩,这通常通过标记节点来完成。
然而,图语言看起来不同于树语言,“扎根”树的方法通常是使用有向图,因此,虽然有一些非常酷的功能和相应的可视化可用,但如果你还没有使用networkx,它可能不是一个理想的选择。
一个构建树的例子:
import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('B', 'D')
G.add_edge('A', 'E')
G.add_edge('E', 'F')
该库允许每个节点是任何可哈希对象,并且不限制每个节点拥有的子节点的数量。
我使用嵌套字典实现了树。这很容易做到,而且对我来说,它在相当大的数据集上很有效。我在下面发布了一个示例,你可以在谷歌代码中看到更多
def addBallotToTree(self, tree, ballotIndex, ballot=""):
"""Add one ballot to the tree.
The root of the tree is a dictionary that has as keys the indicies of all
continuing and winning candidates. For each candidate, the value is also
a dictionary, and the keys of that dictionary include "n" and "bi".
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
If candidate c is a winning candidate, then that portion of the tree is
expanded to indicate the breakdown of the subsequently ranked candidates.
In this situation, additional keys are added to the tree[c] dictionary
corresponding to subsequently ranked candidates.
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
tree[c][d]["n"] is the number of ballots that rank c first and d second.
tree[c][d]["bi"] is a list of the corresponding ballot indices.
Where the second ranked candidates is also a winner, then the tree is
expanded to the next level.
Losing candidates are ignored and treated as if they do not appear on the
ballots. For example, tree[c][d]["n"] is the total number of ballots
where candidate c is the first non-losing candidate, c is a winner, and
d is the next non-losing candidate. This will include the following
ballots, where x represents a losing candidate:
[c d]
[x c d]
[c x d]
[x c x x d]
During the count, the tree is dynamically updated as candidates change
their status. The parameter "tree" to this method may be the root of the
tree or may be a sub-tree.
"""
if ballot == "":
# Add the complete ballot to the tree
weight, ballot = self.b.getWeightedBallot(ballotIndex)
else:
# When ballot is not "", we are adding a truncated ballot to the tree,
# because a higher-ranked candidate is a winner.
weight = self.b.getWeight(ballotIndex)
# Get the top choice among candidates still in the running
# Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
# we are looking for the top choice over a truncated ballot.
for c in ballot:
if c in self.continuing | self.winners:
break # c is the top choice so stop
else:
c = None # no candidates left on this ballot
if c is None:
# This will happen if the ballot contains only winning and losing
# candidates. The ballot index will not need to be transferred
# again so it can be thrown away.
return
# Create space if necessary.
if not tree.has_key(c):
tree[c] = {}
tree[c]["n"] = 0
tree[c]["bi"] = []
tree[c]["n"] += weight
if c in self.winners:
# Because candidate is a winner, a portion of the ballot goes to
# the next candidate. Pass on a truncated ballot so that the same
# candidate doesn't get counted twice.
i = ballot.index(c)
ballot2 = ballot[i+1:]
self.addBallotToTree(tree[c], ballotIndex, ballot2)
else:
# Candidate is in continuing so we stop here.
tree[c]["bi"].append(ballotIndex)
Python不像Java那样具有相当广泛的“内置”数据结构。但是,因为Python是动态的,所以很容易创建通用树。例如,二叉树可能是:
class Tree:
def __init__(self):
self.left = None
self.right = None
self.data = None
你可以这样使用它:
root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"
如果每个节点需要任意数量的子节点,则使用子节点列表:
class Tree:
def __init__(self, data):
self.children = []
self.data = data
left = Tree("left")
middle = Tree("middle")
right = Tree("right")
root = Tree("root")
root.children = [left, middle, right]
推荐文章
- 我如何在Django中过滤一个DateTimeField的日期?
- 数组与链表
- 在Python中用索引迭代列表
- -e,——editable选项在pip install中什么时候有用?
- 使用pip命令从requirements.txt升级python包
- Django更改默认的runserver端口
- 输入对象的datetime。Datetime没有Datetime属性
- numpy数组的Python内存使用情况
- NumPy或Pandas:保持数组类型为整数,同时具有NaN值
- 列表理解条件中的' elif '
- Python的“property”和“attribute”有什么区别?
- 在Python中格式化多行字典的正确方法是什么?
- 向异常添加信息?
- Sphinx autodoc不够自动
- 如何限制Django模型中数值字段的最大值?