假设我有一个字典列表:

[
    {'id': 1, 'name': 'john', 'age': 34},
    {'id': 1, 'name': 'john', 'age': 34},
    {'id': 2, 'name': 'hanna', 'age': 30},
]

如何获得唯一字典的列表(删除重复项)?

[
    {'id': 1, 'name': 'john', 'age': 34},
    {'id': 2, 'name': 'hanna', 'age': 30},
]

当前回答

这里有一个相当紧凑的解决方案,尽管我怀疑不是特别有效(委婉地说):

>>> ds = [{'id':1,'name':'john', 'age':34},
...       {'id':1,'name':'john', 'age':34},
...       {'id':2,'name':'hanna', 'age':30}
...       ]
>>> map(dict, set(tuple(sorted(d.items())) for d in ds))
[{'age': 30, 'id': 2, 'name': 'hanna'}, {'age': 34, 'id': 1, 'name': 'john'}]

其他回答

在python 3中,简单的技巧,但基于唯一字段(id):

data = [ {'id': 1}, {'id': 1}]

list({ item['id'] : item for item in data}.values())

这里有一个内存开销很小的实现,代价是不像其他实现那样紧凑。

values = [ {'id':2,'name':'hanna', 'age':30},
           {'id':1,'name':'john', 'age':34},
           {'id':1,'name':'john', 'age':34},
           {'id':2,'name':'hanna', 'age':30},
           {'id':1,'name':'john', 'age':34},]
count = {}
index = 0
while index < len(values):
    if values[index]['id'] in count:
        del values[index]
    else:
        count[values[index]['id']] = 1
        index += 1

输出:

[{'age': 30, 'id': 2, 'name': 'hanna'}, {'age': 34, 'id': 1, 'name': 'john'}]

这里有一个相当紧凑的解决方案,尽管我怀疑不是特别有效(委婉地说):

>>> ds = [{'id':1,'name':'john', 'age':34},
...       {'id':1,'name':'john', 'age':34},
...       {'id':2,'name':'hanna', 'age':30}
...       ]
>>> map(dict, set(tuple(sorted(d.items())) for d in ds))
[{'age': 30, 'id': 2, 'name': 'hanna'}, {'age': 34, 'id': 1, 'name': 'john'}]

我总结了我最喜欢的尝试:

https://repl.it/@SmaMa/Python-List-of-unique-dictionaries

# ----------------------------------------------
# Setup
# ----------------------------------------------

myList = [
  {"id":"1", "lala": "value_1"},
  {"id": "2", "lala": "value_2"}, 
  {"id": "2", "lala": "value_2"}, 
  {"id": "3", "lala": "value_3"}
]
print("myList:", myList)

# -----------------------------------------------
# Option 1 if objects has an unique identifier
# -----------------------------------------------

myUniqueList = list({myObject['id']:myObject for myObject in myList}.values())
print("myUniqueList:", myUniqueList)

# -----------------------------------------------
# Option 2 if uniquely identified by whole object
# -----------------------------------------------

myUniqueSet = [dict(s) for s in set(frozenset(myObject.items()) for myObject in myList)]
print("myUniqueSet:", myUniqueSet)

# -----------------------------------------------
# Option 3 for hashable objects (not dicts)
# -----------------------------------------------

myHashableObjects = list(set(["1", "2", "2", "3"]))
print("myHashAbleList:", myHashableObjects)

我们可以用熊猫

import pandas as pd
yourdict=pd.DataFrame(L).drop_duplicates().to_dict('r')
Out[293]: [{'age': 34, 'id': 1, 'name': 'john'}, {'age': 30, 'id': 2, 'name': 'hanna'}]

注意与接受答案略有不同。

drop_duplicate将检查pandas中的所有列,如果都相同则删除该行。

例如:

如果我们把第二个字典的名字从约翰改为彼得

L=[
    {'id': 1, 'name': 'john', 'age': 34},
    {'id': 1, 'name': 'peter', 'age': 34},
    {'id': 2, 'name': 'hanna', 'age': 30},
]
pd.DataFrame(L).drop_duplicates().to_dict('r')
Out[295]: 
[{'age': 34, 'id': 1, 'name': 'john'},
 {'age': 34, 'id': 1, 'name': 'peter'},# here will still keeping the dict in the out put 
 {'age': 30, 'id': 2, 'name': 'hanna'}]