A recent talk about unordered_map in C++ made me realize that I should use unordered_map for most cases where I used map before, because of the efficiency of lookup ( amortized O(1) vs. O(log n) ). Most times I use a map, I use either int or std::string as the key type; hence, I've got no problems with the definition of the hash function. The more I thought about it, the more I came to realize that I can't find any reason of using a std::map over a std::unordered_map in the case of keys with simple types -- I took a look at the interfaces, and didn't find any significant differences that would impact my code.

因此,问题是:是否有任何真正的理由使用std::map而不是std::unordered_map在简单类型的情况下,如int和std::string?

我是从严格的编程角度提出这个问题的——我知道它并不是完全标准的,而且它可能会给移植带来问题。

另外,我认为正确答案之一可能是“对于较小的数据集更有效”,因为开销更小(是真的吗?)——因此,我希望将这个问题限制在键数量非普通的情况下(>1 024)。

编辑:哦,我忘记了显而易见的(感谢GMan!)——是的,地图当然是有序的——我知道,我正在寻找其他原因。


当前回答

原因已在其他答案中给出;这是另一个。

std::map(平衡二叉树)操作平摊O(log n)和最坏情况O(log n)。 std::unordered_map(哈希表)操作平摊O(1)和最坏情况O(n)。

在实践中,哈希表每隔一段时间就会出现O(n)操作的“打嗝”,这可能是应用程序所能容忍的,也可能不是。如果它不能容忍,你更喜欢std::map而不是std::unordered_map。

其他回答

我最近做了一个测试,做了50000个归并排序。这意味着如果字符串键是相同的,合并字节字符串。最终的输出应该是排序的。这包括查找每一个插入。

对于地图实现,完成这项工作需要200毫秒。对于unordered_map + map,插入unordered_map需要70 ms,插入map需要80 ms。所以混合实现快了50毫秒。

我们在使用地图之前应该三思。如果您只需要在程序的最终结果中对数据进行排序,那么混合解决方案可能会更好。

如果你想比较std::map和std::unordered_map实现的速度,你可以使用谷歌的sparsehash项目,它有一个time_hash_map程序来计时。例如,在x86_64 Linux系统上使用gcc 4.4.2

$ ./time_hash_map
TR1 UNORDERED_MAP (4 byte objects, 10000000 iterations):
map_grow              126.1 ns  (27427396 hashes, 40000000 copies)  290.9 MB
map_predict/grow       67.4 ns  (10000000 hashes, 40000000 copies)  232.8 MB
map_replace            22.3 ns  (37427396 hashes, 40000000 copies)
map_fetch              16.3 ns  (37427396 hashes, 40000000 copies)
map_fetch_empty         9.8 ns  (10000000 hashes,        0 copies)
map_remove             49.1 ns  (37427396 hashes, 40000000 copies)
map_toggle             86.1 ns  (20000000 hashes, 40000000 copies)

STANDARD MAP (4 byte objects, 10000000 iterations):
map_grow              225.3 ns  (       0 hashes, 20000000 copies)  462.4 MB
map_predict/grow      225.1 ns  (       0 hashes, 20000000 copies)  462.6 MB
map_replace           151.2 ns  (       0 hashes, 20000000 copies)
map_fetch             156.0 ns  (       0 hashes, 20000000 copies)
map_fetch_empty         1.4 ns  (       0 hashes,        0 copies)
map_remove            141.0 ns  (       0 hashes, 20000000 copies)
map_toggle             67.3 ns  (       0 hashes, 20000000 copies)

如果你用Visual Studio 2010编译项目-忘记字符串的unordered_map。 如果你使用更现代的Studio,比如2017 -那么unordered_map比ordered map快得多。

以上所有的小补充:

当你需要按范围获取元素时,最好使用map,因为它们是排序的,你可以从一个边界迭代到另一个边界。

我只是想指出……有很多种unordered_map。

在哈希图上查找维基百科文章。根据所使用的实现的不同,查找、插入和删除方面的特征可能有很大差异。

这是我最担心的添加unordered_map到STL:他们将不得不选择一个特定的实现,因为我怀疑他们会走政策的道路,所以我们将被困在一个实现的平均使用,而没有其他情况…

例如,一些哈希映射具有线性重新哈希,其中不是一次重新哈希整个哈希映射,而是在每次插入时重新哈希一部分,这有助于分摊成本。

另一个例子:一些哈希映射使用一个简单的节点列表作为bucket,其他使用map,其他不使用节点,但找到最近的槽,最后一些将使用节点列表,但重新排序,以便最后访问的元素位于前面(像缓存一样)。

因此,目前我倾向于std::map或loki::AssocVector(用于冻结数据集)。

不要误解我的意思,我希望使用std::unordered_map,将来也可能会使用,但是当您想到实现它的所有方法和由此产生的各种性能时,很难“信任”这样一个容器的可移植性。