很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。

你对一本1.25美元的书有什么期待?

不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。

当有质数个桶时,数字的分布真的更均匀吗?

或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?


当前回答

通常,一个简单的哈希函数的工作原理是,取输入的“组成部分”(在字符串的情况下是字符),将它们乘以某个常数的幂,然后以某种整数类型将它们相加。例如,一个字符串的典型哈希值(虽然不是特别好)可能是:

(first char) + k * (second char) + k^2 * (third char) + ...

然后,如果输入了一堆具有相同首字符的字符串,那么结果将都是相同的k模,至少在整数类型溢出之前是这样。

[举个例子,Java的字符串hashCode与此惊人地相似——它将字符的顺序颠倒,k=31。所以你会得到以31为模的惊人的关系在以相同方式结束的字符串之间,以及以2^32为模的惊人的关系在除了接近结尾的字符串之间都是相同的。这并没有严重扰乱哈希表行为。]

哈希表的工作原理是将哈希的模数除以桶的数量。

在哈希表中,不为可能的情况产生冲突是很重要的,因为冲突会降低哈希表的效率。

现在,假设有人将一大堆值放入一个哈希表中,这些值在项目之间有某种关系,比如所有的第一个字符都相同。我想说,这是一种相当可预测的使用模式,所以我们不希望它产生太多冲突。

It turns out that "because of the nature of maths", if the constant used in the hash, and the number of buckets, are coprime, then collisions are minimised in some common cases. If they are not coprime, then there are some fairly simple relationships between inputs for which collisions are not minimised. All the hashes come out equal modulo the common factor, which means they'll all fall into the 1/n th of the buckets which have that value modulo the common factor. You get n times as many collisions, where n is the common factor. Since n is at least 2, I'd say it's unacceptable for a fairly simple use case to generate at least twice as many collisions as normal. If some user is going to break our distribution into buckets, we want it to be a freak accident, not some simple predictable usage.

现在,哈希表实现显然无法控制放入其中的项。他们不能阻止他们之间的联系。所以要做的就是确保常量和桶数都是互质。这样你就不需要单独依靠“最后一个”分量来确定桶的模数相对于某个小的公共因子。据我所知,它们不一定是质数,只要是质素就可以了。

But if the hash function and the hashtable are written independently, then the hashtable doesn't know how the hash function works. It might be using a constant with small factors. If you're lucky it might work completely differently and be nonlinear. If the hash is good enough, then any bucket count is just fine. But a paranoid hashtable can't assume a good hash function, so should use a prime number of buckets. Similarly a paranoid hash function should use a largeish prime constant, to reduce the chance that someone uses a number of buckets which happens to have a common factor with the constant.

在实践中,我认为使用2的幂作为桶的数量是相当正常的。这很方便,并且省去了四处搜索或预先选择正确大小的质数的麻烦。所以你依赖于哈希函数而不是使用偶数乘数,这通常是一个安全的假设。但是,基于上面的哈希函数,您仍然会偶尔遇到糟糕的哈希行为,而素数桶计数可能会有进一步的帮助。

就我所知,提出“所有东西都必须是质数”的原则是在哈希表上进行良好分布的充分条件,而不是必要条件。它允许每个人进行互操作,而不需要假设其他人遵循相同的规则。

[Edit: there's another, more specialized reason to use a prime number of buckets, which is if you handle collisions with linear probing. Then you calculate a stride from the hashcode, and if that stride comes out to be a factor of the bucket count then you can only do (bucket_count / stride) probes before you're back where you started. The case you most want to avoid is stride = 0, of course, which must be special-cased, but to avoid also special-casing bucket_count / stride equal to a small integer, you can just make the bucket_count prime and not care what the stride is provided it isn't 0.]

其他回答

http://computinglife.wordpress.com/2008/11/20/why-do-hash-functions-use-prime-numbers/

解释得很清楚,还有图片。

编辑:作为一个总结,使用质数是因为当数值乘以所选质数并将它们全部相加时,获得唯一值的可能性最大。例如,给定一个字符串,将每个字母的值与质数相乘,然后将它们全部相加,就会得到它的哈希值。

一个更好的问题是,为什么是数字31?

博士tl;

Index [hash(input)%2]将导致所有可能哈希值的一半和一段值发生冲突。Index [hash(input)%prime]导致所有可能哈希值中的<2的碰撞。将除数固定为表的大小还可以确保数字不能大于表。

我想说,这个链接的第一个答案是我找到的关于这个问题的最清晰的答案。

考虑键K ={0,1,…,100}和一个哈希表,其中桶数为m = 12。因为3是12的因数,所以是3倍数的键将被散列到是3倍数的存储桶中:

键{0,12、24、36…}将被散列到bucket 0。 键{3,15日,27日,39岁,…}将被散列到桶3。 键{42 6日,18日,30日,…}将被散列到桶6。 键{9日,21日,33岁,45岁,…}将被散列到桶9。

如果K是均匀分布的(即K中的每个键出现的可能性都是相等的),那么m的选择就不是那么关键了。但是,如果K不是均匀分布的呢?想象最有可能出现的键是3的倍数。在这种情况下,所有不是3倍数的桶都很可能是空的(这在哈希表性能方面非常糟糕)。

这种情况比看起来更常见。例如,想象一下,您正在根据对象在内存中的存储位置来跟踪它们。如果您的计算机的字大小是4个字节,那么您将哈希键是4的倍数。不用说,选择m是4的倍数将是一个糟糕的选择:你将有3m/4个桶完全空了,所有的键都在剩下的m/4个桶中碰撞。

一般来说:

K中每一个与桶数m有公因数的键都将被哈希为这个因数的倍数。

因此,为了尽量减少碰撞,减少m和k的元素之间的公因数的数量是很重要的,这是如何实现的呢?通过选择m是一个因数很少的数,一个质数。

来自马里奥的回答。

只是把从答案中得到的一些想法写下来。

Hashing uses modulus so any value can fit into a given range We want to randomize collisions Randomize collision meaning there are no patterns as how collisions would happen, or, changing a small part in input would result a completely different hash value To randomize collision, avoid using the base (10 in decimal, 16 in hex) as modulus, because 11 % 10 -> 1, 21 % 10 -> 1, 31 % 10 -> 1, it shows a clear pattern of hash value distribution: value with same last digits will collide Avoid using powers of base (10^2, 10^3, 10^n) as modulus because it also creates a pattern: value with same last n digits matters will collide Actually, avoid using any thing that has factors other than itself and 1, because it creates a pattern: multiples of a factor will be hashed into selected values For example, 9 has 3 as factor, thus 3, 6, 9, ...999213 will always be hashed into 0, 3, 6 12 has 3 and 2 as factor, thus 2n will always be hashed into 0, 2, 4, 6, 8, 10, and 3n will always be hashed into 0, 3, 6, 9 This will be a problem if input is not evenly distributed, e.g. if many values are of 3n, then we only get 1/3 of all possible hash values and collision is high So by using a prime as a modulus, the only pattern is that multiple of the modulus will always hash into 0, otherwise hash values distributions are evenly spread

这取决于哈希函数的选择。

许多哈希函数通过将数据中的各种元素与一些因子相乘,再乘以与机器的字大小相对应的2的幂的模(这个模可以通过让计算溢出来释放)来组合数据中的各种元素。

您不希望在数据元素的乘数和哈希表的大小之间有任何公共因子,因为这样可能会发生改变数据元素不会将数据分散到整个表上的情况。如果你为表的大小选择一个质数,这样的公因数是极不可能的。

另一方面,这些因数通常由奇数质数组成,因此在哈希表中使用2的幂也应该是安全的(例如,Eclipse在生成Java hashCode()方法时使用31)。