这可能是一个微不足道的问题,但我如何在python中并行化下面的循环?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

我知道如何在Python中启动单个线程,但我不知道如何“收集”结果。

多个进程也可以——在这种情况下,只要是最简单的就行。我目前使用的是Linux,但代码应该在Windows和Mac上运行。

并行化这段代码最简单的方法是什么?


当前回答

使用Ray有很多优点:

除了多个核(使用相同的代码)之外,还可以在多台机器上并行。 通过共享内存(和零拷贝序列化)有效地处理数值数据。 具有分布式调度的高任务吞吐量。 容错。

在本例中,您可以启动Ray并定义一个远程函数

import ray

ray.init()

@ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
    # Do something.
    return 1, 2, 3

然后并行地调用它

output1, output2, output3 = [], [], []

# Launch the tasks.
for j in range(10):
    id1, id2, id3 = calc_stuff.remote(parameter=j)
    output1.append(id1)
    output2.append(id2)
    output3.append(id3)

# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)

要在集群上运行相同的示例,唯一需要更改的行是对ray.init()的调用。相关文档可以在这里找到。

请注意,我正在帮助开发雷。

其他回答

为什么不用线程和一个互斥来保护一个全局列表呢?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

请记住,您的速度将与最慢的线程一样快

Dask期货;我很惊讶至今还没有人提起这件事……

from dask.distributed import Client

client = Client(n_workers=8) # In this example I have 8 cores and processes (can also use threads if desired)

def my_function(i):
    output = <code to execute in the for loop here>
    return output

futures = []

for i in <whatever you want to loop across here>:
    future = client.submit(my_function, i)
    futures.append(future)

results = client.gather(futures)
client.close()

tqdm库的并发包装器是并行化长时间运行代码的好方法。tqdm通过智能进度表提供当前进度和剩余时间的反馈,我发现这对于长时间计算非常有用。

通过对thread_map的简单调用,循环可以被重写为并发线程,或者通过对process_map的简单调用,循环可以被重写为并发多进程:

from tqdm.contrib.concurrent import thread_map, process_map


def calc_stuff(num, multiplier):
    import time

    time.sleep(1)

    return num, num * multiplier


if __name__ == "__main__":

    # let's parallelize this for loop:
    # results = [calc_stuff(i, 2) for i in range(64)]

    loop_idx = range(64)
    multiplier = [2] * len(loop_idx)

    # either with threading:
    results_threading = thread_map(calc_stuff, loop_idx, multiplier)

    # or with multi-processing:
    results_processes = process_map(calc_stuff, loop_idx, multiplier)

并行处理的一个非常简单的例子是

from multiprocessing import Process

output1 = list()
output2 = list()
output3 = list()

def yourfunction():
    for j in range(0, 10):
        # calc individual parameter value
        parameter = j * offset
        # call the calculation
        out1, out2, out3 = calc_stuff(parameter=parameter)

        # put results into correct output list
        output1.append(out1)
        output2.append(out2)
        output3.append(out3)

if __name__ == '__main__':
    p = Process(target=pa.yourfunction, args=('bob',))
    p.start()
    p.join()

使用Ray有很多优点:

除了多个核(使用相同的代码)之外,还可以在多台机器上并行。 通过共享内存(和零拷贝序列化)有效地处理数值数据。 具有分布式调度的高任务吞吐量。 容错。

在本例中,您可以启动Ray并定义一个远程函数

import ray

ray.init()

@ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
    # Do something.
    return 1, 2, 3

然后并行地调用它

output1, output2, output3 = [], [], []

# Launch the tasks.
for j in range(10):
    id1, id2, id3 = calc_stuff.remote(parameter=j)
    output1.append(id1)
    output2.append(id2)
    output3.append(id3)

# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)

要在集群上运行相同的示例,唯一需要更改的行是对ray.init()的调用。相关文档可以在这里找到。

请注意,我正在帮助开发雷。