这可能是一个微不足道的问题,但我如何在python中并行化下面的循环?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

我知道如何在Python中启动单个线程,但我不知道如何“收集”结果。

多个进程也可以——在这种情况下,只要是最简单的就行。我目前使用的是Linux,但代码应该在Windows和Mac上运行。

并行化这段代码最简单的方法是什么?


当前回答

为什么不用线程和一个互斥来保护一个全局列表呢?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

请记住,您的速度将与最慢的线程一样快

其他回答

假设我们有一个async函数

async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
    # Do some async procesing    

这需要在一个大数组上运行。有些属性被传递给程序,有些则来自数组中字典元素的属性。

async def process_students(self, student_name: str, loop):
    market = sys.argv[2]
    subjects = [...] #Some large array
    batchsize = 5
    for i in range(0, len(subjects), batchsize):
        batch = subjects[i:i+batchsize]
        await asyncio.gather(*(self.work_async(student_name,
                                           sub['Code'],
                                           loop)
                       for sub in batch))

tqdm库的并发包装器是并行化长时间运行代码的好方法。tqdm通过智能进度表提供当前进度和剩余时间的反馈,我发现这对于长时间计算非常有用。

通过对thread_map的简单调用,循环可以被重写为并发线程,或者通过对process_map的简单调用,循环可以被重写为并发多进程:

from tqdm.contrib.concurrent import thread_map, process_map


def calc_stuff(num, multiplier):
    import time

    time.sleep(1)

    return num, num * multiplier


if __name__ == "__main__":

    # let's parallelize this for loop:
    # results = [calc_stuff(i, 2) for i in range(64)]

    loop_idx = range(64)
    multiplier = [2] * len(loop_idx)

    # either with threading:
    results_threading = thread_map(calc_stuff, loop_idx, multiplier)

    # or with multi-processing:
    results_processes = process_map(calc_stuff, loop_idx, multiplier)

这是最简单的方法!

你可以使用asyncio。(文档可以在这里找到)。它被用作多个Python异步框架的基础,这些框架提供了高性能的网络和web服务器、数据库连接库、分布式任务队列等。此外,它有高级和低级api来适应任何类型的问题。

import asyncio

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)

    return wrapped

@background
def your_function(argument):
    #code

现在这个函数将在调用时并行运行,而不会将主程序置于等待状态。你也可以用它来并行for循环。当调用for循环时,虽然循环是顺序的,但每次迭代都是在解释器到达主程序时并行运行的。

1. 发射环平行于主线程没有任何等待

@background
def your_function(argument):
    time.sleep(5)
    print('function finished for '+str(argument))


for i in range(10):
    your_function(i)


print('loop finished')

这将产生以下输出:

loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1

更新:2022年5月

虽然这回答了最初的问题,但有一些方法可以让我们按照被点赞的评论的要求等待循环完成。把它们也加在这里。实现的关键是:asyncio.gather() & run_until_complete()。考虑以下函数:

import asyncio
import time

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)

    return wrapped

@background
def your_function(argument, other_argument): # Added another argument
    time.sleep(5)
    print(f"function finished for {argument=} and {other_argument=}")

def code_to_run_before():
    print('This runs Before Loop!')

def code_to_run_after():
    print('This runs After Loop!')

2. 平行跑,但要等待结束

code_to_run_before()                                                         # Anything you want to run before, run here!

loop = asyncio.get_event_loop()                                              # Have a new event loop

looper = asyncio.gather(*[your_function(i, 1) for i in range(1, 5)])         # Run the loop
                               
results = loop.run_until_complete(looper)                                    # Wait until finish

code_to_run_after()                                                          # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=2 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=1 and other_argument=1
function finished for argument=4 and other_argument=1
This runs After Loop!

3.并行运行多个循环并等待完成

code_to_run_before()                                                         # Anything you want to run before, run here!   

loop = asyncio.get_event_loop()                                              # Have a new event loop

group1 = asyncio.gather(*[your_function(i, 1) for i in range(1, 2)])         # Run all the loops you want
group2 = asyncio.gather(*[your_function(i, 2) for i in range(3, 5)])         # Run all the loops you want
group3 = asyncio.gather(*[your_function(i, 3) for i in range(6, 9)])         # Run all the loops you want

all_groups = asyncio.gather(group1, group2, group3)                          # Gather them all                                    
results = loop.run_until_complete(all_groups)                                # Wait until finish

code_to_run_after()                                                          # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=3 and other_argument=2
function finished for argument=1 and other_argument=1
function finished for argument=6 and other_argument=3
function finished for argument=4 and other_argument=2
function finished for argument=7 and other_argument=3
function finished for argument=8 and other_argument=3
This runs After Loop!

4. 循环按顺序运行,但每个循环的迭代都是彼此并行运行的

code_to_run_before()                                                               # Anything you want to run before, run here!

for loop_number in range(3):

    loop = asyncio.get_event_loop()                                                # Have a new event loop

    looper = asyncio.gather(*[your_function(i, loop_number) for i in range(1, 5)]) # Run the loop
                             
    results = loop.run_until_complete(looper)                                      # Wait until finish

    print(f"finished for {loop_number=}")       

code_to_run_after()                                                                # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=3 and other_argument=0
function finished for argument=4 and other_argument=0
function finished for argument=1 and other_argument=0
function finished for argument=2 and other_argument=0
finished for loop_number=0
function finished for argument=4 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=2 and other_argument=1
function finished for argument=1 and other_argument=1
finished for loop_number=1
function finished for argument=1 and other_argument=2
function finished for argument=4 and other_argument=2
function finished for argument=3 and other_argument=2
function finished for argument=2 and other_argument=2
finished for loop_number=2
This runs After Loop!

更新:2022年6月

这在目前的形式可能无法运行在某些版本的jupyter笔记本电脑。原因是jupyter笔记本利用事件循环。要使它在这样的jupyter版本上工作,nest_asyncio(从名称可以看出,它将嵌套事件循环)是可行的方法。只需导入并应用它在单元格的顶部:

import nest_asyncio
nest_asyncio.apply()

上面讨论的所有功能在笔记本环境中也应该可以访问。

由于全局解释器锁(GIL)的存在,在CPython上使用多线程并不能为纯python代码提供更好的性能。我建议使用multiprocessing模块:

pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

注意,这在交互式解释器中不起作用。

为了避免GIL周围常见的FUD:在本例中使用线程没有任何优势。这里要使用进程,而不是线程,因为它们避免了一大堆问题。

看看这个;

http://docs.python.org/library/queue.html

这可能不是正确的方法,但我会这样做;

实际的代码;

from multiprocessing import Process, JoinableQueue as Queue 

class CustomWorker(Process):
    def __init__(self,workQueue, out1,out2,out3):
        Process.__init__(self)
        self.input=workQueue
        self.out1=out1
        self.out2=out2
        self.out3=out3
    def run(self):
            while True:
                try:
                    value = self.input.get()
                    #value modifier
                    temp1,temp2,temp3 = self.calc_stuff(value)
                    self.out1.put(temp1)
                    self.out2.put(temp2)
                    self.out3.put(temp3)
                    self.input.task_done()
                except Queue.Empty:
                    return
                   #Catch things better here
    def calc_stuff(self,param):
        out1 = param * 2
        out2 = param * 4
        out3 = param * 8
        return out1,out2,out3
def Main():
    inputQueue = Queue()
    for i in range(10):
        inputQueue.put(i)
    out1 = Queue()
    out2 = Queue()
    out3 = Queue()
    processes = []
    for x in range(2):
          p = CustomWorker(inputQueue,out1,out2,out3)
          p.daemon = True
          p.start()
          processes.append(p)
    inputQueue.join()
    while(not out1.empty()):
        print out1.get()
        print out2.get()
        print out3.get()
if __name__ == '__main__':
    Main()

希望这能有所帮助。