我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

用一个细致的理解,你可以

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}

dc = {xi:(x[xi] if xi not in list(y.keys()) 
           else y[xi]) for xi in list(x.keys())+(list(y.keys()))}

给予

>>> dc
{'a': 1, 'c': 11, 'b': 10}

注意合成,如果不明白

{ (some_key if condition else default_key):(something_if_true if condition 
          else something_if_false) for key, value in dict_.items() }

其他回答

这个问题被标签为Python-3x,但考虑到这是一个相对较新的补充,并且最受欢迎的,接受的答案与Python 2.x解决方案广泛处理,我敢添加一个线条,引用一个令人兴奋的功能的Python 2.x列表理解,即名字泄漏。

$ python2
Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
[GCC 6.3.0 20170118] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> [z.update(d) for z in [{}] for d in (x, y)]
[None, None]
>>> z
{'a': 1, 'c': 11, 'b': 10}
>>> ...

我很高兴说上面的内容不再在任何Python 3版本上工作。

此外,当您使用.items() (Python 3.0 之前),您正在创建一个新的列表,包含从字典中的项目. 如果您的字典是大,那么它是相当多的顶部(两个大列表将被扔掉,一旦合并的字典创建)。更新() 可以更有效地工作,因为它可以通过第二个字典项目为项目。

在时间方面:

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()\ntemp.update(y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

此外,字典创建的关键词论点仅在Python 2.3中添加,而复制()和更新()将在较旧版本中工作。

在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。

dict(x.items() | y.items())

dict(x.viewitems() | y.viewitems())

编辑:

首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。

此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:

In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop

我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。

另一个,更细致的选择:

z = dict(x, **y)

注意:这已成为一个受欢迎的答案,但重要的是要指出的是,如果 y 有任何不紧密的密钥,事实上,这完全是CPython实施细节的滥用,并且它不在Python 3或PyPy,IronPython,或Jython工作。

z = MergeDict(x, y)

当使用这个新对象时,它将像合并词典一样行事,但它将有持续的创作时间和持续的记忆脚印,同时让原始词典无触摸。

当然,如果你使用结果很多,那么你会在某个时候达到创建一个真正的合并词典会是最快的解决方案的界限。

a = { 'x': 3, 'y': 4 }
b = MergeDict(a)  # we merge just one dict
b['x'] = 5
print b  # will print {'x': 5, 'y': 4}
print a  # will print {'y': 4, 'x': 3}

class MergeDict(object):
  def __init__(self, *originals):
    self.originals = ({},) + originals[::-1]  # reversed

  def __getitem__(self, key):
    for original in self.originals:
      try:
        return original[key]
      except KeyError:
        pass
    raise KeyError(key)

  def __setitem__(self, key, value):
    self.originals[0][key] = value

  def __iter__(self):
    return iter(self.keys())

  def __repr__(self):
    return '%s(%s)' % (
      self.__class__.__name__,
      ', '.join(repr(original)
          for original in reversed(self.originals)))

  def __str__(self):
    return '{%s}' % ', '.join(
        '%r: %r' % i for i in self.iteritems())

  def iteritems(self):
    found = set()
    for original in self.originals:
      for k, v in original.iteritems():
        if k not in found:
          yield k, v
          found.add(k)

  def items(self):
    return list(self.iteritems())

  def keys(self):
    return list(k for k, _ in self.iteritems())

  def values(self):
    return list(v for _, v in self.iteritems())