我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

f = lambda x,y,z: (x+i*z for i in range(int((y-x)/z)))

上面不需要借助任何库就可以做分数步。

其他回答

下面是一个使用itertools的解决方案:

import itertools

def seq(start, end, step):
    if step == 0:
        raise ValueError("step must not be 0")
    sample_count = int(abs(end - start) / step)
    return itertools.islice(itertools.count(start, step), sample_count)

使用的例子:

for i in seq(0, 1, 0.1):
    print(i)

我知道我在这里迟到了,但这里有一个简单的生成器解决方案,在3.6中工作:

def floatRange(*args):
    start, step = 0, 1
    if len(args) == 1:
        stop = args[0]
    elif len(args) == 2:
        start, stop = args[0], args[1]
    elif len(args) == 3:
        start, stop, step = args[0], args[1], args[2]
    else:
        raise TypeError("floatRange accepts 1, 2, or 3 arguments. ({0} given)".format(len(args)))
    for num in start, step, stop:
        if not isinstance(num, (int, float)):
            raise TypeError("floatRange only accepts float and integer arguments. ({0} : {1} given)".format(type(num), str(num)))
    for x in range(int((stop-start)/step)):
        yield start + (x * step)
    return

然后你可以像原来的range()一样调用它…没有错误处理,但请告诉我是否有可以合理捕捉到的错误,我会更新。或者你可以更新它。这是StackOverflow。

这是我的解决方案,以获得浮动步长范围。 使用这个函数,不需要导入numpy,也不需要安装它。 我很确定它可以被改进和优化。请随意发表在这里。

from __future__ import division
from math import log

def xfrange(start, stop, step):

    old_start = start #backup this value

    digits = int(round(log(10000, 10)))+1 #get number of digits
    magnitude = 10**digits
    stop = int(magnitude * stop) #convert from 
    step = int(magnitude * step) #0.1 to 10 (e.g.)

    if start == 0:
        start = 10**(digits-1)
    else:
        start = 10**(digits)*start

    data = []   #create array

    #calc number of iterations
    end_loop = int((stop-start)//step)
    if old_start == 0:
        end_loop += 1

    acc = start

    for i in xrange(0, end_loop):
        data.append(acc/magnitude)
        acc += step

    return data

print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)

输出结果为:

[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]

最佳解决方案:没有舍入误差

>>> step = .1
>>> N = 10     # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

或者,对于一组范围而不是一组数据点(例如,连续函数),使用:

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:

>>> import math
>>> def f(x):
        return math.sin(x)

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]

[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505, 
 0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
 0.7833269096274834, 0.8414709848078965]

你可以使用这个函数:

def frange(start,end,step):
    return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))