我想在PostgreSQL中随机选择行,我尝试了这个:

select * from table where random() < 0.01;

但也有人建议:

select * from table order by random() limit 1000;

我有一个非常大的表,有5亿行,我希望它是快速的。

哪种方法更好?有什么不同?选择随机行最好的方法是什么?


当前回答

快速的方式

根据您的规格(以及评论中的其他信息),

您有一个数字ID列(整数),只有很少(或中等数量)的间隙。 显然没有或很少有写操作。 您的ID列必须被索引!主键很有用。

下面的查询不需要对大表进行顺序扫描,只需要进行索引扫描。

首先,获取主查询的估计值:

SELECT count(*) AS ct              -- optional
     , min(id)  AS min_id
     , max(id)  AS max_id
     , max(id) - min(id) AS id_span
FROM   big;

唯一可能昂贵的部分是count(*)(对于巨大的表)。考虑到上述规格,您不需要它。用一个估计来代替完整的计数就可以了,几乎不需要任何成本:

SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint AS ct
FROM   pg_class
WHERE  oid = 'big'::regclass;  -- your table name

详细解释:

在PostgreSQL中快速发现表的行数

只要ct不比id_span小很多,查询的性能就优于其他方法。

WITH params AS (
   SELECT 1       AS min_id           -- minimum id <= current min id
        , 5100000 AS id_span          -- rounded up. (max_id - min_id + buffer)
    )
SELECT *
FROM  (
   SELECT p.min_id + trunc(random() * p.id_span)::integer AS id
   FROM   params p
        , generate_series(1, 1100) g  -- 1000 + buffer
   GROUP  BY 1                        -- trim duplicates
) r
JOIN   big USING (id)
LIMIT  1000;                          -- trim surplus

在id空间中生成随机数。您有“很少的空白”,因此将10%(足以轻松覆盖空白)添加到要检索的行数。 每个id都可以随机选择多次(尽管对于大id空格来说不太可能),因此将生成的数字分组(或使用DISTINCT)。 将id连接到大表中。这应该是非常快的索引到位。 最后,修剪多余的id,没有被dupes和gap吃掉。每一行都有完全相等的机会被选中。

短的版本

您可以简化这个查询。上面查询中的CTE仅用于教育目的:

SELECT *
FROM  (
   SELECT DISTINCT 1 + trunc(random() * 5100000)::integer AS id
   FROM   generate_series(1, 1100) g
   ) r
JOIN   big USING (id)
LIMIT  1000;

使用rCTE进行细化

特别是当你对差距和估计不太确定的时候。

WITH RECURSIVE random_pick AS (
   SELECT *
   FROM  (
      SELECT 1 + trunc(random() * 5100000)::int AS id
      FROM   generate_series(1, 1030)  -- 1000 + few percent - adapt to your needs
      LIMIT  1030                      -- hint for query planner
      ) r
   JOIN   big b USING (id)             -- eliminate miss

   UNION                               -- eliminate dupe
   SELECT b.*
   FROM  (
      SELECT 1 + trunc(random() * 5100000)::int AS id
      FROM   random_pick r             -- plus 3 percent - adapt to your needs
      LIMIT  999                       -- less than 1000, hint for query planner
      ) r
   JOIN   big b USING (id)             -- eliminate miss
   )
TABLE  random_pick
LIMIT  1000;  -- actual limit

我们可以在基本查询中使用较小的剩余。如果有太多的间隙,所以我们在第一次迭代中没有找到足够的行,rCTE将继续使用递归项进行迭代。我们仍然需要相对较少的ID空间间隙,否则递归可能会在达到极限之前耗尽——或者我们必须从一个足够大的缓冲区开始,这与优化性能的目的相矛盾。

在rCTE中,由UNION消除重复。

外部LIMIT使CTE停止,只要我们有足够的行。

这个查询是精心起草的,使用可用的索引,生成实际上是随机的行,直到达到限制才停止(除非递归耗尽)。如果你要重写它,这里会有很多陷阱。

包装成函数

重复使用相同的表,不同的参数:

CREATE OR REPLACE FUNCTION f_random_sample(_limit int = 1000, _gaps real = 1.03)
  RETURNS SETOF big
  LANGUAGE plpgsql VOLATILE ROWS 1000 AS
$func$
DECLARE
   _surplus  int := _limit * _gaps;
   _estimate int := (           -- get current estimate from system
      SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint
      FROM   pg_class
      WHERE  oid = 'big'::regclass);
BEGIN
   RETURN QUERY
   WITH RECURSIVE random_pick AS (
      SELECT *
      FROM  (
         SELECT 1 + trunc(random() * _estimate)::int
         FROM   generate_series(1, _surplus) g
         LIMIT  _surplus           -- hint for query planner
         ) r (id)
      JOIN   big USING (id)        -- eliminate misses

      UNION                        -- eliminate dupes
      SELECT *
      FROM  (
         SELECT 1 + trunc(random() * _estimate)::int
         FROM   random_pick        -- just to make it recursive
         LIMIT  _limit             -- hint for query planner
         ) r (id)
      JOIN   big USING (id)        -- eliminate misses
   )
   TABLE  random_pick
   LIMIT  _limit;
END
$func$;

电话:

SELECT * FROM f_random_sample();
SELECT * FROM f_random_sample(500, 1.05);

泛型函数

我们可以让这个泛型适用于任何具有唯一整数列的表(通常是PK):将表作为多态类型传递,并(可选地)传递PK列的名称,并使用EXECUTE:

CREATE OR REPLACE FUNCTION f_random_sample(_tbl_type anyelement
                                         , _id text = 'id'
                                         , _limit int = 1000
                                         , _gaps real = 1.03)
  RETURNS SETOF anyelement
  LANGUAGE plpgsql VOLATILE ROWS 1000 AS
$func$
DECLARE
   -- safe syntax with schema & quotes where needed
   _tbl text := pg_typeof(_tbl_type)::text;
   _estimate int := (SELECT (reltuples / relpages
                          * (pg_relation_size(oid) / 8192))::bigint
                     FROM   pg_class  -- get current estimate from system
                     WHERE  oid = _tbl::regclass);
BEGIN
   RETURN QUERY EXECUTE format(
   $$
   WITH RECURSIVE random_pick AS (
      SELECT *
      FROM  (
         SELECT 1 + trunc(random() * $1)::int
         FROM   generate_series(1, $2) g
         LIMIT  $2                 -- hint for query planner
         ) r(%2$I)
      JOIN   %1$s USING (%2$I)     -- eliminate misses

      UNION                        -- eliminate dupes
      SELECT *
      FROM  (
         SELECT 1 + trunc(random() * $1)::int
         FROM   random_pick        -- just to make it recursive
         LIMIT  $3                 -- hint for query planner
         ) r(%2$I)
      JOIN   %1$s USING (%2$I)     -- eliminate misses
   )
   TABLE  random_pick
   LIMIT  $3;
   $$
 , _tbl, _id
   )
   USING _estimate              -- $1
       , (_limit * _gaps)::int  -- $2 ("surplus")
       , _limit                 -- $3
   ;
END
$func$;

调用默认值(重要!):

SELECT * FROM f_random_sample(null::big);  --!

或者更具体地说:

SELECT * FROM f_random_sample(null::"my_TABLE", 'oDD ID', 666, 1.15);

性能与静态版本基本相同。

相关:

重构一个PL/pgSQL函数以返回各种SELECT查询的输出-章节“各种完整的表类型” 从PostgreSQL函数返回SETOF行 Format()用于EXECUTE? 在触发器函数中插入动态表名

这对于SQL注入是安全的。看到的:

表名作为PostgreSQL函数参数 Postgres函数中的SQL注入vs准备好的查询

可能的替代方法

如果你的需求允许重复调用的相同集(我们说的是重复调用)考虑一个物化视图。执行上述查询一次,并将结果写入一个表。用户以闪电般的速度获得准随机选择。每隔一段时间或你选择的事件刷新你的随机选择。

Postgres 9.5引入了TABLESAMPLE系统(n)

其中n是百分比。手册:

伯努利和系统抽样方法各接受一个单一 参数,它是要采样的表的分数,表示为a 0到100之间的百分比。这个参数可以是任何实值表达式。

大胆强调我的。它非常快,但结果不是完全随机的。再看一下手册:

SYSTEM方法明显比BERNOULLI方法快 当指定小的抽样百分比时,但它可能返回一个 由于聚类效应,表中样本的随机程度较低。

返回的行数变化很大。在我们的例子中,要获取大约1000行:

SELECT * FROM big TABLESAMPLE SYSTEM ((1000 * 100) / 5100000.0);

相关:

在PostgreSQL中快速发现表的行数

或者安装额外的模块tsm_system_rows,以准确获取所请求的行数(如果有足够的行),并允许更方便的语法:

SELECT * FROM big TABLESAMPLE SYSTEM_ROWS(1000);

详情见埃文的回答。

但这仍然不是完全随机的。

其他回答

Erwin Brandstetter所概述的物化观点“可能的替代方案”的变体是可能的。

例如,您不希望在返回的随机化值中出现重复值。一个示例用例是生成只能使用一次的短代码。

包含你的(非随机的)值集的主表必须有一些表达式来决定哪些行是“被使用的”,哪些行不是——在这里我将保持简单,只创建一个布尔列,并使用名称。

假设这是输入表(可能会添加其他列,因为它们不会影响解决方案):

id_values  id  |   used
           ----+--------
           1   |   FALSE
           2   |   FALSE
           3   |   FALSE
           4   |   FALSE
           5   |   FALSE
           ...

根据需要填充ID_VALUES表。然后,正如Erwin所描述的,创建一个物化视图,将ID_VALUES表随机化一次:

CREATE MATERIALIZED VIEW id_values_randomized AS
  SELECT id
  FROM id_values
  ORDER BY random();

注意,物化视图不包含已使用的列,因为这很快就会过时。视图也不需要包含id_values表中的其他列。

为了获得(并“使用”)随机值,在id_values上使用update - return,通过连接从id_values_randomised中选择id_values,并应用所需的条件来只获得相关的可能性。例如:

UPDATE id_values
SET used = TRUE
WHERE id_values.id IN 
  (SELECT i.id
    FROM id_values_randomized r INNER JOIN id_values i ON i.id = r.id
    WHERE (NOT i.used)
    LIMIT 1)
RETURNING id;

根据需要更改LIMIT——如果一次需要多个随机值,请将LIMIT更改为n,其中n是所需值的数量。

With the proper indexes on id_values, I believe the UPDATE-RETURNING should execute very quickly with little load. It returns randomized values with one database round-trip. The criteria for "eligible" rows can be as complex as required. New rows can be added to the id_values table at any time, and they will become accessible to the application as soon as the materialized view is refreshed (which can likely be run at an off-peak time). Creation and refresh of the materialized view will be slow, but it only needs to be executed when new id's added to the id_values table need to be made available.

我的经验告诉我:

offset floor(random() * N) limit 1并不比order by random() limit 1快。

我认为偏移量方法会更快,因为它可以节省在Postgres中排序的时间。事实证明并非如此。

Postgresql order by random(),按随机顺序选择行:

这是缓慢的,因为它对整个表进行排序,以保证每一行都有完全相等的机会被选中。全表扫描对于完美的随机性是不可避免的。

select your_columns from your_table ORDER BY random()

Postgresql order by random() with distinct:

select * from 
  (select distinct your_columns from your_table) table_alias
ORDER BY random()

Postgresql顺序随机限制一行:

这也很慢,因为它必须扫描表,以确保每一行都有相同的机会被选中,就在这一刻:

select your_columns from your_table ORDER BY random() limit 1

常数时间选择随机N行元素周期表扫描:

如果您的表非常大,那么上面的表扫描就需要花费5分钟才能完成。

为了更快,你可以安排一个幕后的夜间表扫描驯鹿,这将保证一个O(1)恒定时间速度的完美随机选择,除了在夜间索引表扫描期间,在你可能收到另一个随机行之前,它必须等待维护完成。

--Create a demo table with lots of random nonuniform data, big_data 
--is your huge table you want to get random rows from in constant time. 
drop table if exists big_data;  
CREATE TABLE big_data (id serial unique, some_data text );  
CREATE INDEX ON big_data (id);  
--Fill it with a million rows which simulates your beautiful data:  
INSERT INTO big_data (some_data) SELECT md5(random()::text) AS some_data
FROM generate_series(1,10000000);
 
--This delete statement puts holes in your index
--making it NONuniformly distributed  
DELETE FROM big_data WHERE id IN (2, 4, 6, 7, 8); 
 
 
--Do the nightly maintenance task on a schedule at 1AM.
drop table if exists big_data_mapper; 
CREATE TABLE big_data_mapper (id serial, big_data_id int); 
CREATE INDEX ON big_data_mapper (id); 
CREATE INDEX ON big_data_mapper (big_data_id); 
INSERT INTO big_data_mapper(big_data_id) SELECT id FROM big_data ORDER BY id;
 
--We have to use a function because the big_data_mapper might be out-of-date
--in between nightly tasks, so to solve the problem of a missing row, 
--you try again until you succeed.  In the event the big_data_mapper 
--is broken, it tries 25 times then gives up and returns -1. 
CREATE or replace FUNCTION get_random_big_data_id()  
RETURNS int language plpgsql AS $$ 
declare  
    response int; 
BEGIN
    --Loop is required because big_data_mapper could be old
    --Keep rolling the dice until you find one that hits.
    for counter in 1..25 loop
        SELECT big_data_id 
        FROM big_data_mapper OFFSET floor(random() * ( 
            select max(id) biggest_value from big_data_mapper 
            )
        ) LIMIT 1 into response;
        if response is not null then
            return response;
        end if;
    end loop;
    return -1;
END;  
$$; 
 
--get a random big_data id in constant time: 
select get_random_big_data_id(); 
 
--Get 1 random row from big_data table in constant time: 
select * from big_data where id in ( 
    select get_random_big_data_id() from big_data limit 1 
); 
┌─────────┬──────────────────────────────────┐ 
│   id    │            some_data             │ 
├─────────┼──────────────────────────────────┤ 
│ 8732674 │ f8d75be30eff0a973923c413eaf57ac0 │ 
└─────────┴──────────────────────────────────┘ 

--Get 4 random rows from big_data in constant time: 
select * from big_data where id in ( 
    select get_random_big_data_id() from big_data limit 3 
);
┌─────────┬──────────────────────────────────┐ 
│   id    │            some_data             │ 
├─────────┼──────────────────────────────────┤ 
│ 2722848 │ fab6a7d76d9637af89b155f2e614fc96 │ 
│ 8732674 │ f8d75be30eff0a973923c413eaf57ac0 │ 
│ 9475611 │ 36ac3eeb6b3e171cacd475e7f9dade56 │ 
└─────────┴──────────────────────────────────┘ 

--Test what happens when big_data_mapper stops receiving 
--nightly reindexing.
delete from big_data_mapper where 1=1; 
select get_random_big_data_id();   --It tries 25 times, and returns -1
                                   --which means wait N minutes and try again.

改编自:https://www.gab.lc/articles/bigdata_postgresql_order_by_random

或者,如果以上都是太多的工作。

A simpler good 'nuff solution for constant time select random row is to make a new column on your big table called big_data.mapper_int make it not null with a unique index. Every night reset the column with a unique integer between 1 and max(n). To get a random row you "choose a random integer between 0 and max(id)" and return the row where mapper_int is that. If there's no row by that id, because the row has changed since re-index, choose another random row. If a row is added to big_data.mapper_int then populate it with max(id) + 1

这是一个对我有用的决定。我想这很容易理解和执行。

SELECT 
  field_1, 
  field_2, 
  field_2, 
  random() as ordering
FROM 
  big_table
WHERE 
  some_conditions
ORDER BY
  ordering 
LIMIT 1000;

我知道我有点晚了,但我刚刚找到了这个叫做pg_sample的很棒的工具:

pg_sample -从较大的PostgreSQL数据库中提取一个小的样本数据集,同时保持引用完整性。

我尝试了一个350M行的数据库,它真的很快,不知道随机性。

./pg_sample --limit="small_table = *" --limit="large_table = 100000" -U postgres source_db | psql -U postgres target_db