Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

将值发送到生成器函数。例如有这样的函数:

def mygen():
    """Yield 5 until something else is passed back via send()"""
    a = 5
    while True:
        f = (yield a) #yield a and possibly get f in return
        if f is not None: 
            a = f  #store the new value

您可以:

>>> g = mygen()
>>> g.next()
5
>>> g.next()
5
>>> g.send(7)  #we send this back to the generator
7
>>> g.next() #now it will yield 7 until we send something else
7

其他回答

在python中解包元组

在python 3中,你可以使用与函数定义中可选参数相同的语法来解包元组:

>>> first,second,*rest = (1,2,3,4,5,6,7,8)
>>> first
1
>>> second
2
>>> rest
[3, 4, 5, 6, 7, 8]

但是一个不太为人所知但更强大的特性允许你在列表中间有未知数量的元素:

>>> first,*rest,last = (1,2,3,4,5,6,7,8)
>>> first
1
>>> rest
[2, 3, 4, 5, 6, 7]
>>> last
8

可读正则表达式

在Python中,您可以将正则表达式拆分为多行,命名匹配并插入注释。

示例详细语法(来自Python):

>>> pattern = """
... ^                   # beginning of string
... M{0,4}              # thousands - 0 to 4 M's
... (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                     #            or 500-800 (D, followed by 0 to 3 C's)
... (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                     #        or 50-80 (L, followed by 0 to 3 X's)
... (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                     #        or 5-8 (V, followed by 0 to 3 I's)
... $                   # end of string
... """
>>> re.search(pattern, 'M', re.VERBOSE)

命名匹配示例(摘自正则表达式HOWTO)

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search( '(((( Lots of punctuation )))' )
>>> m.group('word')
'Lots'

由于字符串字面值的串联,你也可以在不使用re.VERBOSE的情况下详细地编写一个正则表达式。

>>> pattern = (
...     "^"                 # beginning of string
...     "M{0,4}"            # thousands - 0 to 4 M's
...     "(CM|CD|D?C{0,3})"  # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                         #            or 500-800 (D, followed by 0 to 3 C's)
...     "(XC|XL|L?X{0,3})"  # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                         #        or 50-80 (L, followed by 0 to 3 X's)
...     "(IX|IV|V?I{0,3})"  # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                         #        or 5-8 (V, followed by 0 to 3 I's)
...     "$"                 # end of string
... )
>>> print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。

切片运算符中的step参数。例如:

a = [1,2,3,4,5]
>>> a[::2]  # iterate over the whole list in 2-increments
[1,3,5]

特殊情况x[::-1]是“x反转”的有用习语。

>>> a[::-1]
[5,4,3,2,1]

一切都是动态的

“没有编译时”。Python中的一切都是运行时。模块是通过从上到下执行模块的源代码来“定义”的,就像脚本一样,得到的命名空间是模块的属性空间。类似地,类是通过从上到下执行类主体来“定义”的,生成的名称空间是类的属性空间。类主体可以包含完全任意的代码——包括导入语句、循环和其他类语句。像有时要求的那样,“动态”创建一个类、函数甚至模块并不难;事实上,这是不可能避免的,因为一切都是“动态的”。