pandas drop_duplicate函数对于“唯一化”一个数据帧非常有用。我想删除在列的子集上重复的所有行。这可能吗?
A B C
0 foo 0 A
1 foo 1 A
2 foo 1 B
3 bar 1 A
例如,我想删除与列A和C匹配的行,因此这应该删除行0和1。
pandas drop_duplicate函数对于“唯一化”一个数据帧非常有用。我想删除在列的子集上重复的所有行。这可能吗?
A B C
0 foo 0 A
1 foo 1 A
2 foo 1 B
3 bar 1 A
例如,我想删除与列A和C匹配的行,因此这应该删除行0和1。
当前回答
如果你想将结果存储在另一个数据集中:
df.drop_duplicates(keep=False)
or
df.drop_duplicates(keep=False, inplace=False)
如果需要更新相同的数据集:
df.drop_duplicates(keep=False, inplace=True)
上面的例子将删除所有重复项并保留一个,类似于SQL中的DISTINCT *
其他回答
您可以使用replicated()标记所有重复的行,并过滤掉标记的行。如果你以后需要将列赋值给new_df,确保调用.copy(),这样你以后就不会得到SettingWithCopyWarning。
new_df = df[~df.duplicated(subset=['A', 'C'], keep=False)].copy()
该方法的一个很好的特性是,您可以有条件地使用它删除重复项。例如,仅当列A等于'foo'时删除所有重复的行,您可以使用以下代码。
new_df = df[~( df.duplicated(subset=['A', 'B', 'C'], keep=False) & df['A'].eq('foo') )].copy()
此外,如果您不希望按名称写出列,您可以传递df的切片。列到子集=。对于drop_duplicate()也是如此。
# to consider all columns for identifying duplicates
df[~df.duplicated(subset=df.columns, keep=False)].copy()
# the same is true for drop_duplicates
df.drop_duplicates(subset=df.columns, keep=False)
# to consider columns in positions 0 and 2 (i.e. 'A' and 'C') for identifying duplicates
df.drop_duplicates(subset=df.columns[[0, 2]], keep=False)
使用drop_duplicate和keep参数,这在pandas中要容易得多。
import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.drop_duplicates(subset=['A', 'C'], keep=False)
实际上,删除行0和1只需要(任何包含匹配的A和C的观测值都被保留):
In [335]:
df['AC']=df.A+df.C
In [336]:
print df.drop_duplicates('C', take_last=True) #this dataset is a special case, in general, one may need to first drop_duplicates by 'c' and then by 'a'.
A B C AC
2 foo 1 B fooB
3 bar 1 A barA
[2 rows x 4 columns]
但我怀疑你真正想要的是这个(一个包含匹配的A和C的观察结果被保留):
In [337]:
print df.drop_duplicates('AC')
A B C AC
0 foo 0 A fooA
2 foo 1 B fooB
3 bar 1 A barA
[3 rows x 4 columns]
编辑:
因此,现在情况清楚多了:
In [352]:
DG=df.groupby(['A', 'C'])
print pd.concat([DG.get_group(item) for item, value in DG.groups.items() if len(value)==1])
A B C
2 foo 1 B
3 bar 1 A
[2 rows x 3 columns]
使用groupby和filter
import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.groupby(["A", "C"]).filter(lambda df:df.shape[0] == 1)
如果你想将结果存储在另一个数据集中:
df.drop_duplicates(keep=False)
or
df.drop_duplicates(keep=False, inplace=False)
如果需要更新相同的数据集:
df.drop_duplicates(keep=False, inplace=True)
上面的例子将删除所有重复项并保留一个,类似于SQL中的DISTINCT *