我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。


当前回答

这里有一些很好的答案,但是,我也推荐完整阅读Python函数式编程教程,它有助于解释生成器的一些更有效的用例。

特别有趣的是,现在可以从生成器函数外部更新yield变量,因此可以用相对较少的工作创建动态和交织的协程。 更多信息请参见PEP 342:通过增强型生成器的协程。

其他回答

缓冲。当以大块获取数据是有效的,但以小块处理数据时,生成器可能会有所帮助:

def bufferedFetch():
  while True:
     buffer = getBigChunkOfData()
     # insert some code to break on 'end of data'
     for i in buffer:    
          yield i

上面的方法可以让您轻松地将缓冲与处理分开。消费者函数现在可以一个一个地获取值,而不用担心缓冲。

也适用于打印到n的质数:

def genprime(n=10):
    for num in range(3, n+1):
        for factor in range(2, num):
            if num%factor == 0:
                break
        else:
            yield(num)

for prime_num in genprime(100):
    print(prime_num)

你可以使用生成器的一个实际例子是,如果你有某种形状,你想要遍历它的角、边或其他地方。对于我自己的项目(源代码在这里),我有一个矩形:

class Rect():

    def __init__(self, x, y, width, height):
        self.l_top  = (x, y)
        self.r_top  = (x+width, y)
        self.r_bot  = (x+width, y+height)
        self.l_bot  = (x, y+height)

    def __iter__(self):
        yield self.l_top
        yield self.r_top
        yield self.r_bot
        yield self.l_bot

现在我可以创建一个矩形,并在它的角上循环:

myrect=Rect(50, 50, 100, 100)
for corner in myrect:
    print(corner)

除了__iter__,你可以有一个方法iter_corners,并在myrect.iter_corners()中使用for corner来调用它。使用__iter__更优雅,因为我们可以在for表达式中直接使用类实例名。

由于没有提到生成器的send方法,这里有一个例子:

def test():
    for i in xrange(5):
        val = yield
        print(val)

t = test()

# Proceed to 'yield' statement
next(t)

# Send value to yield
t.send(1)
t.send('2')
t.send([3])

它展示了向运行中的生成器发送值的可能性。下面视频中关于生成器的更高级课程(包括解释的yield,并行处理的生成器,逃避递归限制等)

David Beazley在PyCon 2014上谈发电机

简单的解释是: 考虑for语句

for item in iterable:
   do_stuff()

很多时候,iterable中的所有项都不需要从一开始就存在,但可以在需要时动态生成。这在两种情况下都更有效

空间(您永远不需要同时存储所有项目)和 时间(迭代可能在需要所有项目之前完成)。

其他时候,你甚至不知道所有的项目提前。例如:

for command in user_input():
   do_stuff_with(command)

你没有办法预先知道所有用户的命令,但如果你有一个生成器给你命令,你可以使用这样一个很好的循环:

def user_input():
    while True:
        wait_for_command()
        cmd = get_command()
        yield cmd

使用生成器,您还可以对无限序列进行迭代,这在迭代容器时当然是不可能的。