我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。


当前回答

缓冲。当以大块获取数据是有效的,但以小块处理数据时,生成器可能会有所帮助:

def bufferedFetch():
  while True:
     buffer = getBigChunkOfData()
     # insert some code to break on 'end of data'
     for i in buffer:    
          yield i

上面的方法可以让您轻松地将缓冲与处理分开。消费者函数现在可以一个一个地获取值,而不用担心缓冲。

其他回答

请参阅PEP 255中的“动机”部分。

生成器的一个不太明显的用途是创建可中断函数,它允许您在不使用线程的情况下“同时”执行更新UI或运行多个作业(实际上是交错的)。

基本上避免回调函数时迭代输入维护状态。

请参阅这里和这里,了解使用生成器可以做什么。

我发现生成器非常有助于清理代码,并为您提供了一种非常独特的方式来封装和模块化代码。如果您需要某些东西根据自己的内部处理不断地输出值,并且需要从代码中的任何地方调用该东西(而不仅仅是在循环或块中),则可以使用生成器。

一个抽象的例子是斐波那契数生成器,它不在循环中,当从任何地方调用它时,它总是返回序列中的下一个数字:

def fib():
    first = 0
    second = 1
    yield first
    yield second

    while 1:
        next = first + second
        yield next
        first = second
        second = next

fibgen1 = fib()
fibgen2 = fib()

现在你有了两个斐波那契数生成器对象,你可以在代码中的任何地方调用它们,它们总是会按如下顺序返回更大的斐波那契数:

>>> fibgen1.next(); fibgen1.next(); fibgen1.next(); fibgen1.next()
0
1
1
2
>>> fibgen2.next(); fibgen2.next()
0
1
>>> fibgen1.next(); fibgen1.next()
3
5

生成器的可爱之处在于,它们封装了状态,而不必经历创建对象的繁琐过程。考虑它们的一种方法是将它们视为记住其内部状态的“函数”。

我从Python生成器中得到了斐波那契函数的例子——它们是什么?只要有一点想象力,您就可以想出很多其他情况,在这些情况下,生成器可以很好地替代for循环和其他传统迭代结构。

现实世界中的例子

假设你的MySQL表中有1亿个域名,你想为每个域名更新Alexa排名。

你需要做的第一件事是从数据库中选择域名。

假设表名为domains,列名为domain。

如果你使用SELECT domain FROM domains,它将返回1亿行,这将消耗大量内存。所以您的服务器可能会崩溃。

所以你决定分批运行这个程序。假设我们的批量大小是1000。

在我们的第一批中,我们将查询前1000行,检查每个域的Alexa排名并更新数据库行。

在我们的第二批中,我们将处理接下来的1000行。第三批将从2001年到3000年,以此类推。

现在我们需要一个生成器函数来生成我们的批。

这是我们的生成器函数:

def ResultGenerator(cursor, batchsize=1000):
    while True:
        results = cursor.fetchmany(batchsize)
        if not results:
            break
        for result in results:
            yield result

正如你所看到的,我们的函数总是得到结果。如果使用关键字return而不是yield,那么整个函数将在到达return时结束。

return - returns only once
yield - returns multiple times

如果一个函数使用关键字yield,那么它就是一个生成器。

现在你可以这样迭代:

db = MySQLdb.connect(host="localhost", user="root", passwd="root", db="domains")
cursor = db.cursor()
cursor.execute("SELECT domain FROM domains")
for result in ResultGenerator(cursor):
    doSomethingWith(result)
db.close()

简单的解释是: 考虑for语句

for item in iterable:
   do_stuff()

很多时候,iterable中的所有项都不需要从一开始就存在,但可以在需要时动态生成。这在两种情况下都更有效

空间(您永远不需要同时存储所有项目)和 时间(迭代可能在需要所有项目之前完成)。

其他时候,你甚至不知道所有的项目提前。例如:

for command in user_input():
   do_stuff_with(command)

你没有办法预先知道所有用户的命令,但如果你有一个生成器给你命令,你可以使用这样一个很好的循环:

def user_input():
    while True:
        wait_for_command()
        cmd = get_command()
        yield cmd

使用生成器,您还可以对无限序列进行迭代,这在迭代容器时当然是不可能的。