我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。
当前回答
使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。
另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。
如果你有这样一个fibonacci- to-n函数:
# function version
def fibon(n):
a = b = 1
result = []
for i in xrange(n):
result.append(a)
a, b = b, a + b
return result
你可以更容易地写出这样的函数:
# generator version
def fibon(n):
a = b = 1
for i in xrange(n):
yield a
a, b = b, a + b
函数更清晰。如果你这样使用这个函数:
for x in fibon(1000000):
print x,
在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。
其他回答
生成器提供惰性求值。你可以通过对它们进行迭代来使用它们,或者显式地使用'for',或者隐式地将它传递给任何迭代的函数或构造。您可以将生成器视为返回多个项,就像它们返回一个列表一样,但它们不是一次返回所有项,而是一个接一个地返回它们,并且生成器函数将暂停,直到请求下一个项。
生成器很适合计算大量结果集(特别是涉及循环本身的计算),因为您不知道是否需要所有结果,或者您不想同时为所有结果分配内存。或者在发电机使用另一个发电机,或者消耗其他资源的情况下,如果发生得越晚越方便。
Another use for generators (that is really the same) is to replace callbacks with iteration. In some situations you want a function to do a lot of work and occasionally report back to the caller. Traditionally you'd use a callback function for this. You pass this callback to the work-function and it would periodically call this callback. The generator approach is that the work-function (now a generator) knows nothing about the callback, and merely yields whenever it wants to report something. The caller, instead of writing a separate callback and passing that to the work-function, does all the reporting work in a little 'for' loop around the generator.
For example, say you wrote a 'filesystem search' program. You could perform the search in its entirety, collect the results and then display them one at a time. All of the results would have to be collected before you showed the first, and all of the results would be in memory at the same time. Or you could display the results while you find them, which would be more memory efficient and much friendlier towards the user. The latter could be done by passing the result-printing function to the filesystem-search function, or it could be done by just making the search function a generator and iterating over the result.
如果您想查看后两种方法的示例,请参阅os.path.walk()(带有回调的旧文件系统遍历函数)和os.walk()(新的文件系统遍历生成器)。当然,如果你真的想收集一个列表中的所有结果,生成器方法转换为大列表方法是微不足道的:
big_list = list(the_generator)
请参阅PEP 255中的“动机”部分。
生成器的一个不太明显的用途是创建可中断函数,它允许您在不使用线程的情况下“同时”执行更新UI或运行多个作业(实际上是交错的)。
一堆东西。任何时候你想要生成一个项目序列,但又不想一次将它们全部“物化”到一个列表中。例如,你可以有一个简单的生成器,返回质数:
def primes():
primes_found = set()
primes_found.add(2)
yield 2
for i in itertools.count(1):
candidate = i * 2 + 1
if not all(candidate % prime for prime in primes_found):
primes_found.add(candidate)
yield candidate
然后你可以用它来生成后续质数的乘积:
def prime_products():
primeiter = primes()
prev = primeiter.next()
for prime in primeiter:
yield prime * prev
prev = prime
这些都是相当简单的示例,但是您可以看到它对于处理大型(可能是无限的!)数据集是多么有用,而无需预先生成数据集,这只是比较明显的用途之一。
我最喜欢的用法是“过滤”和“减少”操作。
假设我们正在读取一个文件,并且只想要以“##”开头的行。
def filter2sharps( aSequence ):
for l in aSequence:
if l.startswith("##"):
yield l
然后,我们可以在适当的循环中使用生成器函数
source= file( ... )
for line in filter2sharps( source.readlines() ):
print line
source.close()
reduce的例子类似。假设我们有一个文件,其中我们需要定位<Location>…< / >位置线。[不是HTML标签,而是恰好看起来像标签的行。]
def reduceLocation( aSequence ):
keep= False
block= None
for line in aSequence:
if line.startswith("</Location"):
block.append( line )
yield block
block= None
keep= False
elif line.startsWith("<Location"):
block= [ line ]
keep= True
elif keep:
block.append( line )
else:
pass
if block is not None:
yield block # A partial block, icky
同样,我们可以在一个合适的for循环中使用这个生成器。
source = file( ... )
for b in reduceLocation( source.readlines() ):
print b
source.close()
其思想是,生成器函数允许我们过滤或减少序列,每次生成一个值的另一个序列。
这里有一些很好的答案,但是,我也推荐完整阅读Python函数式编程教程,它有助于解释生成器的一些更有效的用例。
特别有趣的是,现在可以从生成器函数外部更新yield变量,因此可以用相对较少的工作创建动态和交织的协程。 更多信息请参见PEP 342:通过增强型生成器的协程。
推荐文章
- 有没有办法在python中做HTTP PUT
- “foo Is None”和“foo == None”之间有什么区别吗?
- 类没有对象成员
- Django模型“没有显式声明app_label”
- 熊猫能自动从CSV文件中读取日期吗?
- 在python中zip的逆函数是什么?
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 如何检索插入id后插入行在SQLite使用Python?
- 我如何在Django中添加一个CharField占位符?
- 如何在Python中获取当前执行文件的路径?
- 我如何得到“id”后插入到MySQL数据库与Python?
- super()失败,错误:TypeError "参数1必须是类型,而不是classobj"当父不继承对象
- Python内存泄漏
- 实现嵌套字典的最佳方法是什么?
- 如何在tensorflow中获得当前可用的gpu ?