我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。
当前回答
使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。
另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。
如果你有这样一个fibonacci- to-n函数:
# function version
def fibon(n):
a = b = 1
result = []
for i in xrange(n):
result.append(a)
a, b = b, a + b
return result
你可以更容易地写出这样的函数:
# generator version
def fibon(n):
a = b = 1
for i in xrange(n):
yield a
a, b = b, a + b
函数更清晰。如果你这样使用这个函数:
for x in fibon(1000000):
print x,
在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。
其他回答
一堆东西。任何时候你想要生成一个项目序列,但又不想一次将它们全部“物化”到一个列表中。例如,你可以有一个简单的生成器,返回质数:
def primes():
primes_found = set()
primes_found.add(2)
yield 2
for i in itertools.count(1):
candidate = i * 2 + 1
if not all(candidate % prime for prime in primes_found):
primes_found.add(candidate)
yield candidate
然后你可以用它来生成后续质数的乘积:
def prime_products():
primeiter = primes()
prev = primeiter.next()
for prime in primeiter:
yield prime * prev
prev = prime
这些都是相当简单的示例,但是您可以看到它对于处理大型(可能是无限的!)数据集是多么有用,而无需预先生成数据集,这只是比较明显的用途之一。
你可以使用生成器的一个实际例子是,如果你有某种形状,你想要遍历它的角、边或其他地方。对于我自己的项目(源代码在这里),我有一个矩形:
class Rect():
def __init__(self, x, y, width, height):
self.l_top = (x, y)
self.r_top = (x+width, y)
self.r_bot = (x+width, y+height)
self.l_bot = (x, y+height)
def __iter__(self):
yield self.l_top
yield self.r_top
yield self.r_bot
yield self.l_bot
现在我可以创建一个矩形,并在它的角上循环:
myrect=Rect(50, 50, 100, 100)
for corner in myrect:
print(corner)
除了__iter__,你可以有一个方法iter_corners,并在myrect.iter_corners()中使用for corner来调用它。使用__iter__更优雅,因为我们可以在for表达式中直接使用类实例名。
也适用于打印到n的质数:
def genprime(n=10):
for num in range(3, n+1):
for factor in range(2, num):
if num%factor == 0:
break
else:
yield(num)
for prime_num in genprime(100):
print(prime_num)
使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。
另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。
如果你有这样一个fibonacci- to-n函数:
# function version
def fibon(n):
a = b = 1
result = []
for i in xrange(n):
result.append(a)
a, b = b, a + b
return result
你可以更容易地写出这样的函数:
# generator version
def fibon(n):
a = b = 1
for i in xrange(n):
yield a
a, b = b, a + b
函数更清晰。如果你这样使用这个函数:
for x in fibon(1000000):
print x,
在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。
当我们的web服务器充当代理时,我使用生成器:
客户端从服务器请求一个代理url 服务器开始加载目标url 服务器在获得结果后立即将结果返回给客户机
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录