我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。


当前回答

使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。

另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。

如果你有这样一个fibonacci- to-n函数:

# function version
def fibon(n):
    a = b = 1
    result = []
    for i in xrange(n):
        result.append(a)
        a, b = b, a + b
    return result

你可以更容易地写出这样的函数:

# generator version
def fibon(n):
    a = b = 1
    for i in xrange(n):
        yield a
        a, b = b, a + b

函数更清晰。如果你这样使用这个函数:

for x in fibon(1000000):
    print x,

在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。

其他回答

也适用于打印到n的质数:

def genprime(n=10):
    for num in range(3, n+1):
        for factor in range(2, num):
            if num%factor == 0:
                break
        else:
            yield(num)

for prime_num in genprime(100):
    print(prime_num)

由于没有提到生成器的send方法,这里有一个例子:

def test():
    for i in xrange(5):
        val = yield
        print(val)

t = test()

# Proceed to 'yield' statement
next(t)

# Send value to yield
t.send(1)
t.send('2')
t.send([3])

它展示了向运行中的生成器发送值的可能性。下面视频中关于生成器的更高级课程(包括解释的yield,并行处理的生成器,逃避递归限制等)

David Beazley在PyCon 2014上谈发电机

缓冲。当以大块获取数据是有效的,但以小块处理数据时,生成器可能会有所帮助:

def bufferedFetch():
  while True:
     buffer = getBigChunkOfData()
     # insert some code to break on 'end of data'
     for i in buffer:    
          yield i

上面的方法可以让您轻松地将缓冲与处理分开。消费者函数现在可以一个一个地获取值,而不用担心缓冲。

我最喜欢的用法是“过滤”和“减少”操作。

假设我们正在读取一个文件,并且只想要以“##”开头的行。

def filter2sharps( aSequence ):
    for l in aSequence:
        if l.startswith("##"):
            yield l

然后,我们可以在适当的循环中使用生成器函数

source= file( ... )
for line in filter2sharps( source.readlines() ):
    print line
source.close()

reduce的例子类似。假设我们有一个文件,其中我们需要定位<Location>…< / >位置线。[不是HTML标签,而是恰好看起来像标签的行。]

def reduceLocation( aSequence ):
    keep= False
    block= None
    for line in aSequence:
        if line.startswith("</Location"):
            block.append( line )
            yield block
            block= None
            keep= False
        elif line.startsWith("<Location"):
            block= [ line ]
            keep= True
        elif keep:
            block.append( line )
        else:
            pass
    if block is not None:
        yield block # A partial block, icky

同样,我们可以在一个合适的for循环中使用这个生成器。

source = file( ... )
for b in reduceLocation( source.readlines() ):
    print b
source.close()

其思想是,生成器函数允许我们过滤或减少序列,每次生成一个值的另一个序列。

一堆东西。任何时候你想要生成一个项目序列,但又不想一次将它们全部“物化”到一个列表中。例如,你可以有一个简单的生成器,返回质数:

def primes():
    primes_found = set()
    primes_found.add(2)
    yield 2
    for i in itertools.count(1):
        candidate = i * 2 + 1
        if not all(candidate % prime for prime in primes_found):
            primes_found.add(candidate)
            yield candidate

然后你可以用它来生成后续质数的乘积:

def prime_products():
    primeiter = primes()
    prev = primeiter.next()
    for prime in primeiter:
        yield prime * prev
        prev = prime

这些都是相当简单的示例,但是您可以看到它对于处理大型(可能是无限的!)数据集是多么有用,而无需预先生成数据集,这只是比较明显的用途之一。