我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。


当前回答

使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。

另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。

如果你有这样一个fibonacci- to-n函数:

# function version
def fibon(n):
    a = b = 1
    result = []
    for i in xrange(n):
        result.append(a)
        a, b = b, a + b
    return result

你可以更容易地写出这样的函数:

# generator version
def fibon(n):
    a = b = 1
    for i in xrange(n):
        yield a
        a, b = b, a + b

函数更清晰。如果你这样使用这个函数:

for x in fibon(1000000):
    print x,

在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。

其他回答

这里有一些很好的答案,但是,我也推荐完整阅读Python函数式编程教程,它有助于解释生成器的一些更有效的用例。

特别有趣的是,现在可以从生成器函数外部更新yield变量,因此可以用相对较少的工作创建动态和交织的协程。 更多信息请参见PEP 342:通过增强型生成器的协程。

简单的解释是: 考虑for语句

for item in iterable:
   do_stuff()

很多时候,iterable中的所有项都不需要从一开始就存在,但可以在需要时动态生成。这在两种情况下都更有效

空间(您永远不需要同时存储所有项目)和 时间(迭代可能在需要所有项目之前完成)。

其他时候,你甚至不知道所有的项目提前。例如:

for command in user_input():
   do_stuff_with(command)

你没有办法预先知道所有用户的命令,但如果你有一个生成器给你命令,你可以使用这样一个很好的循环:

def user_input():
    while True:
        wait_for_command()
        cmd = get_command()
        yield cmd

使用生成器,您还可以对无限序列进行迭代,这在迭代容器时当然是不可能的。

使用生成器的原因之一是为了使某些解决方案的解决方案更清晰。

另一种方法是一次处理一个结果,避免建立庞大的结果列表,否则无论如何都要分开处理。

如果你有这样一个fibonacci- to-n函数:

# function version
def fibon(n):
    a = b = 1
    result = []
    for i in xrange(n):
        result.append(a)
        a, b = b, a + b
    return result

你可以更容易地写出这样的函数:

# generator version
def fibon(n):
    a = b = 1
    for i in xrange(n):
        yield a
        a, b = b, a + b

函数更清晰。如果你这样使用这个函数:

for x in fibon(1000000):
    print x,

在本例中,如果使用生成器版本,则根本不会创建整个1000000项列表,每次只创建一个值。在使用列表版本时,情况并非如此,在列表版本中,将首先创建列表。

当我们的web服务器充当代理时,我使用生成器:

客户端从服务器请求一个代理url 服务器开始加载目标url 服务器在获得结果后立即将结果返回给客户机

一堆东西。任何时候你想要生成一个项目序列,但又不想一次将它们全部“物化”到一个列表中。例如,你可以有一个简单的生成器,返回质数:

def primes():
    primes_found = set()
    primes_found.add(2)
    yield 2
    for i in itertools.count(1):
        candidate = i * 2 + 1
        if not all(candidate % prime for prime in primes_found):
            primes_found.add(candidate)
            yield candidate

然后你可以用它来生成后续质数的乘积:

def prime_products():
    primeiter = primes()
    prev = primeiter.next()
    for prime in primeiter:
        yield prime * prev
        prev = prime

这些都是相当简单的示例,但是您可以看到它对于处理大型(可能是无限的!)数据集是多么有用,而无需预先生成数据集,这只是比较明显的用途之一。