我开始学习Python,我遇到过生成器函数,其中有yield语句。我想知道这些函数最擅长解决什么类型的问题。


当前回答

我发现生成器非常有助于清理代码,并为您提供了一种非常独特的方式来封装和模块化代码。如果您需要某些东西根据自己的内部处理不断地输出值,并且需要从代码中的任何地方调用该东西(而不仅仅是在循环或块中),则可以使用生成器。

一个抽象的例子是斐波那契数生成器,它不在循环中,当从任何地方调用它时,它总是返回序列中的下一个数字:

def fib():
    first = 0
    second = 1
    yield first
    yield second

    while 1:
        next = first + second
        yield next
        first = second
        second = next

fibgen1 = fib()
fibgen2 = fib()

现在你有了两个斐波那契数生成器对象,你可以在代码中的任何地方调用它们,它们总是会按如下顺序返回更大的斐波那契数:

>>> fibgen1.next(); fibgen1.next(); fibgen1.next(); fibgen1.next()
0
1
1
2
>>> fibgen2.next(); fibgen2.next()
0
1
>>> fibgen1.next(); fibgen1.next()
3
5

生成器的可爱之处在于,它们封装了状态,而不必经历创建对象的繁琐过程。考虑它们的一种方法是将它们视为记住其内部状态的“函数”。

我从Python生成器中得到了斐波那契函数的例子——它们是什么?只要有一点想象力,您就可以想出很多其他情况,在这些情况下,生成器可以很好地替代for循环和其他传统迭代结构。

其他回答

请参阅PEP 255中的“动机”部分。

生成器的一个不太明显的用途是创建可中断函数,它允许您在不使用线程的情况下“同时”执行更新UI或运行多个作业(实际上是交错的)。

现实世界中的例子

假设你的MySQL表中有1亿个域名,你想为每个域名更新Alexa排名。

你需要做的第一件事是从数据库中选择域名。

假设表名为domains,列名为domain。

如果你使用SELECT domain FROM domains,它将返回1亿行,这将消耗大量内存。所以您的服务器可能会崩溃。

所以你决定分批运行这个程序。假设我们的批量大小是1000。

在我们的第一批中,我们将查询前1000行,检查每个域的Alexa排名并更新数据库行。

在我们的第二批中,我们将处理接下来的1000行。第三批将从2001年到3000年,以此类推。

现在我们需要一个生成器函数来生成我们的批。

这是我们的生成器函数:

def ResultGenerator(cursor, batchsize=1000):
    while True:
        results = cursor.fetchmany(batchsize)
        if not results:
            break
        for result in results:
            yield result

正如你所看到的,我们的函数总是得到结果。如果使用关键字return而不是yield,那么整个函数将在到达return时结束。

return - returns only once
yield - returns multiple times

如果一个函数使用关键字yield,那么它就是一个生成器。

现在你可以这样迭代:

db = MySQLdb.connect(host="localhost", user="root", passwd="root", db="domains")
cursor = db.cursor()
cursor.execute("SELECT domain FROM domains")
for result in ResultGenerator(cursor):
    doSomethingWith(result)
db.close()

一堆东西。任何时候你想要生成一个项目序列,但又不想一次将它们全部“物化”到一个列表中。例如,你可以有一个简单的生成器,返回质数:

def primes():
    primes_found = set()
    primes_found.add(2)
    yield 2
    for i in itertools.count(1):
        candidate = i * 2 + 1
        if not all(candidate % prime for prime in primes_found):
            primes_found.add(candidate)
            yield candidate

然后你可以用它来生成后续质数的乘积:

def prime_products():
    primeiter = primes()
    prev = primeiter.next()
    for prime in primeiter:
        yield prime * prev
        prev = prime

这些都是相当简单的示例,但是您可以看到它对于处理大型(可能是无限的!)数据集是多么有用,而无需预先生成数据集,这只是比较明显的用途之一。

我最喜欢的用法是“过滤”和“减少”操作。

假设我们正在读取一个文件,并且只想要以“##”开头的行。

def filter2sharps( aSequence ):
    for l in aSequence:
        if l.startswith("##"):
            yield l

然后,我们可以在适当的循环中使用生成器函数

source= file( ... )
for line in filter2sharps( source.readlines() ):
    print line
source.close()

reduce的例子类似。假设我们有一个文件,其中我们需要定位<Location>…< / >位置线。[不是HTML标签,而是恰好看起来像标签的行。]

def reduceLocation( aSequence ):
    keep= False
    block= None
    for line in aSequence:
        if line.startswith("</Location"):
            block.append( line )
            yield block
            block= None
            keep= False
        elif line.startsWith("<Location"):
            block= [ line ]
            keep= True
        elif keep:
            block.append( line )
        else:
            pass
    if block is not None:
        yield block # A partial block, icky

同样,我们可以在一个合适的for循环中使用这个生成器。

source = file( ... )
for b in reduceLocation( source.readlines() ):
    print b
source.close()

其思想是,生成器函数允许我们过滤或减少序列,每次生成一个值的另一个序列。

缓冲。当以大块获取数据是有效的,但以小块处理数据时,生成器可能会有所帮助:

def bufferedFetch():
  while True:
     buffer = getBigChunkOfData()
     # insert some code to break on 'end of data'
     for i in buffer:    
          yield i

上面的方法可以让您轻松地将缓冲与处理分开。消费者函数现在可以一个一个地获取值,而不用担心缓冲。