我如何才能实现SQL的IN和NOT IN的等价?

我有一个所需值的列表。 场景如下:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['UK', 'China']

# pseudo-code:
df[df['country'] not in countries_to_keep]

我目前的做法如下:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
df2 = pd.DataFrame({'country': ['UK', 'China'], 'matched': True})

# IN
df.merge(df2, how='inner', on='country')

# NOT IN
not_in = df.merge(df2, how='left', on='country')
not_in = not_in[pd.isnull(not_in['matched'])]

但这似乎是一个可怕的拼凑。有人能改进吗?


当前回答

你可以使用pd.Series.isin。

对于“IN”的用法:something.isin(某处)

或者对于"NOT IN": ~something.isin(某处)

举个例子:

>>> df
    country
0        US
1        UK
2   Germany
3     China
>>> countries_to_keep
['UK', 'China']
>>> df.country.isin(countries_to_keep)
0    False
1     True
2    False
3     True
Name: country, dtype: bool
>>> df[df.country.isin(countries_to_keep)]
    country
1        UK
3     China
>>> df[~df.country.isin(countries_to_keep)]
    country
0        US
2   Germany

其他回答

如果你想保持列表的顺序,有一个小技巧:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['Germany', 'US']


ind=[df.index[df['country']==i].tolist() for i in countries_to_keep]
flat_ind=[item for sublist in ind for item in sublist]

df.reindex(flat_ind)

   country
2  Germany
0       US

我想过滤出dfbc行,有一个BUSINESS_ID,也是在dfProfilesBusIds的BUSINESS_ID

dfbc = dfbc[~dfbc['BUSINESS_ID'].isin(dfProfilesBusIds['BUSINESS_ID'])]
df = pd.DataFrame({'countries':['US','UK','Germany','China']})
countries = ['UK','China']

实现:

df[df.countries.isin(countries)]

实施不像在其他国家:

df[df.countries.isin([x for x in np.unique(df.countries) if x not in countries])]

你可以使用pd.Series.isin。

对于“IN”的用法:something.isin(某处)

或者对于"NOT IN": ~something.isin(某处)

举个例子:

>>> df
    country
0        US
1        UK
2   Germany
3     China
>>> countries_to_keep
['UK', 'China']
>>> df.country.isin(countries_to_keep)
0    False
1     True
2    False
3     True
Name: country, dtype: bool
>>> df[df.country.isin(countries_to_keep)]
    country
1        UK
3     China
>>> df[~df.country.isin(countries_to_keep)]
    country
0        US
2   Germany

你也可以在.query()中使用.isin():

df.query('country.isin(@countries_to_keep).values')

# Or alternatively:
df.query('country.isin(["UK", "China"]).values')

要否定你的查询,使用~:

df.query('~country.isin(@countries_to_keep).values')

更新:

另一种方法是使用比较操作符:

df.query('country == @countries_to_keep')

# Or alternatively:
df.query('country == ["UK", "China"]')

要对查询求反,使用!=:

df.query('country != @countries_to_keep')