我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
当前回答
一个更一般的例子-如果在字符串中查找单词或特定单词的部分:
df = pd.DataFrame([('cat andhat', 1000.0), ('hat', 2000000.0), ('the small dog', 1000.0), ('fog', 330000.0),('pet', 330000.0)], columns=['col1', 'col2'])
句子或单词的特定部分:
searchfor = '.*cat.*hat.*|.*the.*dog.*'
创建显示受影响行的列(可以根据需要过滤掉)
df["TrueFalse"]=df['col1'].str.contains(searchfor, regex=True)
col1 col2 TrueFalse
0 cat andhat 1000.0 True
1 hat 2000000.0 False
2 the small dog 1000.0 True
3 fog 330000.0 False
4 pet 3 30000.0 False
其他回答
快速提示:如果要基于索引中包含的部分字符串进行选择,请尝试以下操作:
df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]
也许您想在Pandas数据帧的所有列中搜索一些文本,而不仅仅是在它们的子集中。在这种情况下,以下代码将有所帮助。
df[df.apply(lambda row: row.astype(str).str.contains('String To Find').any(), axis=1)]
警告这种方法虽然方便,但速度相对较慢。
假设您有以下DataFrame:
>>> df = pd.DataFrame([['hello', 'hello world'], ['abcd', 'defg']], columns=['a','b'])
>>> df
a b
0 hello hello world
1 abcd defg
您始终可以在lambda表达式中使用in运算符来创建筛选器。
>>> df.apply(lambda x: x['a'] in x['b'], axis=1)
0 True
1 False
dtype: bool
这里的技巧是在apply中使用axis=1选项,将元素逐行传递给lambda函数,而不是逐列传递。
在此之前,有一些答案可以实现所要求的功能,无论如何,我想展示最普遍的方式:
df.filter(regex=".*STRING_YOU_LOOK_FOR.*")
这样,你就可以得到你所寻找的专栏,无论它是怎么写的。
(显然,您必须为每种情况编写正确的正则表达式)
有点类似于@cs95的答案,但这里不需要指定引擎:
df.query('A.str.contains("hello").values')