应用程序开发人员常见的数据库开发错误有哪些?
当前回答
最大的错误是在代码中使用循环更新或插入数据,而基于集合的简单解决方案可以更快、更简单地完成这一任务。
其他回答
使用Access而不是“真正的”数据库。有很多很棒的小型甚至免费的数据库,比如SQL Express、MySQL和SQLite,它们可以更好地工作和扩展。应用程序通常需要以意想不到的方式进行扩展。
相关子查询导致的性能差
大多数情况下,您希望避免相关子查询。如果子查询中存在对外部查询的列的引用,则子查询是相关的。当发生这种情况时,对于返回的每一行至少执行一次子查询,如果在应用包含相关子查询的条件之后应用其他条件,则可以执行更多次。
请原谅这个不自然的示例和Oracle语法,但假设您想要找到自上次商店每天销售额低于10,000美元以来在任何商店中雇用的所有员工。
select e.first_name, e.last_name
from employee e
where e.start_date >
(select max(ds.transaction_date)
from daily_sales ds
where ds.store_id = e.store_id and
ds.total < 10000)
本例中的子查询通过store_id与外部查询相关联,并将对系统中的每个员工执行。优化此查询的一种方法是将子查询移动到内联视图。
select e.first_name, e.last_name
from employee e,
(select ds.store_id,
max(s.transaction_date) transaction_date
from daily_sales ds
where ds.total < 10000
group by s.store_id) dsx
where e.store_id = dsx.store_id and
e.start_date > dsx.transaction_date
In this example, the query in the from clause is now an inline-view (again some Oracle specific syntax) and is only executed once. Depending on your data model, this query will probably execute much faster. It would perform better than the first query as the number of employees grew. The first query could actually perform better if there were few employees and many stores (and perhaps many of stores had no employees) and the daily_sales table was indexed on store_id. This is not a likely scenario but shows how a correlated query could possibly perform better than an alternative.
我曾多次看到初级开发人员关联子查询,这通常会对性能产生严重影响。但是,当删除一个相关的子查询时,一定要查看之前和之后的解释计划,以确保您没有使性能变差。
开发人员所犯的关键数据库设计和编程错误
Selfish database design and usage. Developers often treat the database as their personal persistent object store without considering the needs of other stakeholders in the data. This also applies to application architects. Poor database design and data integrity makes it hard for third parties working with the data and can substantially increase the system's life cycle costs. Reporting and MIS tends to be a poor cousin in application design and only done as an afterthought. Abusing denormalised data. Overdoing denormalised data and trying to maintain it within the application is a recipe for data integrity issues. Use denormalisation sparingly. Not wanting to add a join to a query is not an excuse for denormalising. Scared of writing SQL. SQL isn't rocket science and is actually quite good at doing its job. O/R mapping layers are quite good at doing the 95% of queries that are simple and fit well into that model. Sometimes SQL is the best way to do the job. Dogmatic 'No Stored Procedures' policies. Regardless of whether you believe stored procedures are evil, this sort of dogmatic attitude has no place on a software project. Not understanding database design. Normalisation is your friend and it's not rocket science. Joining and cardinality are fairly simple concepts - if you're involved in database application development there's really no excuse for not understanding them.
没有做正确的标准化。您希望确保数据没有重复,并且根据需要将数据分割为不同的数据。您还需要确保不要过于遵循规范化,否则会损害性能。
根据我的经验: 不与有经验的dba沟通。
推荐文章
- 模式、表和数据库之间的区别是什么?
- 我看到VARCHAR(255)如此频繁地使用(而不是其他长度),有什么好的原因吗?
- 使用pgadmin连接到heroku数据库
- Delete_all vs destroy_all
- 我如何移动一个redis数据库从一个服务器到另一个?
- 如何首次配置postgresql ?
- 数据库性能调优有哪些资源?
- 如何在PostgreSQL中自动更新时间戳
- 当使用JDBC连接到postgres时,是否可以指定模式?
- 删除MySQL中的主键
- 对象'DF__*'依赖于列'*' -将int改为double
- 将映像存储在MongoDB数据库中
- 重复Mongo ObjectId的可能性在两个不同的集合中生成?
- 用户代理字符串可以有多大?
- 字符串作为SQL数据库的主键