我有一个非常大的表(3000万行),我想在r中作为数据框架加载,read.table()有很多方便的特性,但似乎在实现中有很多逻辑会减慢速度。在我的例子中,我假设我事先知道列的类型,表不包含任何列标题或行名,也没有任何需要担心的病态字符。

我知道使用scan()将表读入为列表可以相当快,例如:

datalist <- scan('myfile',sep='\t',list(url='',popularity=0,mintime=0,maxtime=0)))

但我试图将其转换为数据框架的一些尝试似乎将上述性能降低了6倍:

df <- as.data.frame(scan('myfile',sep='\t',list(url='',popularity=0,mintime=0,maxtime=0))))

有更好的办法吗?或者完全不同的解决问题的方法?


当前回答

上面这些我都试过了,[1]做得最好。我只有8gb的内存

循环20个文件,每个5gb, 7列:

read_fwf(arquivos[i],col_types = "ccccccc",fwf_cols(cnpj = c(4,17), nome = c(19,168), cpf = c(169,183), fantasia = c(169,223), sit.cadastral = c(224,225), dt.sitcadastral = c(226,233), cnae = c(376,382)))

其他回答

下面是一个使用fread from data的例子。表1.8.7

这些例子来自我的windows XP Core 2 duo E8400上的帮助页面。

library(data.table)
# Demo speedup
n=1e6
DT = data.table( a=sample(1:1000,n,replace=TRUE),
                 b=sample(1:1000,n,replace=TRUE),
                 c=rnorm(n),
                 d=sample(c("foo","bar","baz","qux","quux"),n,replace=TRUE),
                 e=rnorm(n),
                 f=sample(1:1000,n,replace=TRUE) )
DT[2,b:=NA_integer_]
DT[4,c:=NA_real_]
DT[3,d:=NA_character_]
DT[5,d:=""]
DT[2,e:=+Inf]
DT[3,e:=-Inf]

标准read.table

write.table(DT,"test.csv",sep=",",row.names=FALSE,quote=FALSE)
cat("File size (MB):",round(file.info("test.csv")$size/1024^2),"\n")    
## File size (MB): 51 

system.time(DF1 <- read.csv("test.csv",stringsAsFactors=FALSE))        
##    user  system elapsed 
##   24.71    0.15   25.42
# second run will be faster
system.time(DF1 <- read.csv("test.csv",stringsAsFactors=FALSE))        
##    user  system elapsed 
##   17.85    0.07   17.98

优化read.table

system.time(DF2 <- read.table("test.csv",header=TRUE,sep=",",quote="",  
                          stringsAsFactors=FALSE,comment.char="",nrows=n,                   
                          colClasses=c("integer","integer","numeric",                        
                                       "character","numeric","integer")))


##    user  system elapsed 
##   10.20    0.03   10.32

从文件中读

require(data.table)
system.time(DT <- fread("test.csv"))                                  
 ##    user  system elapsed 
##    3.12    0.01    3.22

sqldf

require(sqldf)

system.time(SQLDF <- read.csv.sql("test.csv",dbname=NULL))             

##    user  system elapsed 
##   12.49    0.09   12.69

# sqldf as on SO

f <- file("test.csv")
system.time(SQLf <- sqldf("select * from f", dbname = tempfile(), file.format = list(header = T, row.names = F)))

##    user  system elapsed 
##   10.21    0.47   10.73

Ff / FFDF

 require(ff)

 system.time(FFDF <- read.csv.ffdf(file="test.csv",nrows=n))   
 ##    user  system elapsed 
 ##   10.85    0.10   10.99

总而言之:

##    user  system elapsed  Method
##   24.71    0.15   25.42  read.csv (first time)
##   17.85    0.07   17.98  read.csv (second time)
##   10.20    0.03   10.32  Optimized read.table
##    3.12    0.01    3.22  fread
##   12.49    0.09   12.69  sqldf
##   10.21    0.47   10.73  sqldf on SO
##   10.85    0.10   10.99  ffdf

奇怪的是,多年来一直没有人回答这个问题的底部,尽管这是一个很重要的问题——data.frames只是具有正确属性的列表,所以如果你有大量的数据,你不想使用as.data.frame或类似的列表。简单地将列表就地“转换”为数据帧要快得多:

attr(df, "row.names") <- .set_row_names(length(df[[1]]))
class(df) <- "data.frame"

这不会复制数据,所以它是即时的(不像所有其他方法)。它假设您已经相应地在列表中设置了names()。

[至于将大数据加载到R中——就我个人而言,我将它们按列转储到二进制文件中,并使用readBin()——这是迄今为止最快的方法(除了映射),并且只受磁盘速度的限制。与二进制数据相比,解析ASCII文件本质上是缓慢的(即使是在C语言中)。

而不是传统的阅读。我觉得fread是一个更快的函数。 指定额外的属性,如只选择所需的列,指定colclasses和字符串作为因素,将减少导入文件的时间。

data_frame <- fread("filename.csv",sep=",",header=FALSE,stringsAsFactors=FALSE,select=c(1,4,5,6,7),colClasses=c("as.numeric","as.character","as.numeric","as.Date","as.Factor"))

另一种选择是使用vroom包。现在在CRAN。 Vroom不加载整个文件,它索引每条记录所在的位置,并在稍后使用它时读取。

只按使用付费。

请参阅vroom介绍,开始使用vroom和vroom基准。

基本的概述是,对一个大文件的初始读取将会快得多,而对数据的后续修改可能会稍微慢一些。所以根据你的用途,这可能是最好的选择。

查看下面vroom基准测试的简化示例,关键部分是超快的读取时间,但稍微播种操作,如聚合等。

package                 read    print   sample   filter  aggregate   total
read.delim              1m      21.5s   1ms      315ms   764ms       1m 22.6s
readr                   33.1s   90ms    2ms      202ms   825ms       34.2s
data.table              15.7s   13ms    1ms      129ms   394ms       16.3s
vroom (altrep) dplyr    1.7s    89ms    1.7s     1.3s    1.9s        6.7s

一开始我没有看到这个问题,几天后我问了一个类似的问题。我将记下我之前的问题,但我认为我应该在这里添加一个答案,以解释我如何使用sqldf()来做到这一点。

关于将2GB或更多的文本数据导入R数据帧的最佳方法,已经有了一些讨论。昨天我写了一篇关于使用sqldf()将数据导入SQLite作为暂存区,然后将它从SQLite吸到r的博客文章,这对我来说真的很好。我能够在不到5分钟的时间内提取2GB(3列,40mm行)的数据。相比之下,read.csv命令运行了一整夜,始终没有完成。

下面是我的测试代码:

设置测试数据:

bigdf <- data.frame(dim=sample(letters, replace=T, 4e7), fact1=rnorm(4e7), fact2=rnorm(4e7, 20, 50))
write.csv(bigdf, 'bigdf.csv', quote = F)

在运行以下导入例程之前,我重新启动R:

library(sqldf)
f <- file("bigdf.csv")
system.time(bigdf <- sqldf("select * from f", dbname = tempfile(), file.format = list(header = T, row.names = F)))

我让下面这行写了一整晚,但始终没有写完:

system.time(big.df <- read.csv('bigdf.csv'))