如何从一个简单的线性回归模型中提取p值(单个解释变量的系数的显著性为非零)和r平方值?例如……

x = cumsum(c(0, runif(100, -1, +1)))
y = cumsum(c(0, runif(100, -1, +1)))
fit = lm(y ~ x)
summary(fit)

我知道summary(fit)显示了p值和r平方值,但我希望能够将它们插入到其他变量中。


当前回答

虽然上面的两个答案都很好,但提取对象部分的过程更一般。

在许多情况下,函数返回列表,并且可以使用str()访问各个组件,str()将打印组件及其名称。然后您可以使用$操作符访问它们,即myobject$componentname。

在lm对象的情况下,有许多预定义的方法可以使用,如coef()、remainder()、summary()等,但你不会总是那么幸运。

其他回答

对于summary()末尾显示的最终p值,该函数使用pf()从summary(fit)$fstatistic值中计算。

fstat <- summary(fit)$fstatistic
pf(fstat[1], fstat[2], fstat[3], lower.tail=FALSE)

来源:[1],[2]

使用:

(summary(fit))$coefficients[***num***,4]

其中num是一个数字,表示系数矩阵的行。这取决于你的模型中有多少特征,以及你想为哪一个提取p值。例如,如果你只有一个变量,那么截距的p值将是[1,4],下一个是你的实际变量的p值将是[2,4]。所以你的num是2。

注意,summary(fit)生成了一个包含您需要的所有信息的对象。se t和p向量都存储在里面。通过选择系数矩阵的第4列来获得p值(存储在summary对象中):

summary(fit)$coefficients[,4] 
summary(fit)$r.squared

尝试str(summary(fit))查看该对象包含的所有信息。

编辑:我误解了蔡斯的答案,它基本上告诉你如何得到我在这里给出的东西。

我多次使用这个lmp函数。

在某个时候,我决定添加一些新功能来增强数据分析。我不是R或统计学方面的专家,但人们通常会看到线性回归的不同信息:

假定值 A和b r² 当然还有点分布的方面

我们来举个例子。这里有

这里有一个不同变量的可重复的例子:

Ex<-structure(list(X1 = c(-36.8598, -37.1726, -36.4343, -36.8644, 
-37.0599, -34.8818, -31.9907, -37.8304, -34.3367, -31.2984, -33.5731
), X2 = c(64.26, 63.085, 66.36, 61.08, 61.57, 65.04, 72.69, 63.83, 
67.555, 76.06, 68.61), Y1 = c(493.81544, 493.81544, 494.54173, 
494.61364, 494.61381, 494.38717, 494.64122, 493.73265, 494.04246, 
494.92989, 494.98384), Y2 = c(489.704166, 489.704166, 490.710962, 
490.653212, 490.710612, 489.822928, 488.160904, 489.747776, 490.600579, 
488.946738, 490.398958), Y3 = c(-19L, -19L, -19L, -23L, -30L, 
-43L, -43L, -2L, -58L, -47L, -61L)), .Names = c("X1", "X2", "Y1", 
"Y2", "Y3"), row.names = c(NA, 11L), class = "data.frame")


library(reshape2)
library(ggplot2)
Ex2<-melt(Ex,id=c("X1","X2"))
colnames(Ex2)[3:4]<-c("Y","Yvalue")
Ex3<-melt(Ex2,id=c("Y","Yvalue"))
colnames(Ex3)[3:4]<-c("X","Xvalue")

ggplot(Ex3,aes(Xvalue,Yvalue))+
          geom_smooth(method="lm",alpha=0.2,size=1,color="grey")+
          geom_point(size=2)+
          facet_grid(Y~X,scales='free')


#Use the lmp function

lmp <- function (modelobject) {
  if (class(modelobject) != "lm") stop("Not an object of class 'lm' ")
  f <- summary(modelobject)$fstatistic
    p <- pf(f[1],f[2],f[3],lower.tail=F)
    attributes(p) <- NULL
    return(p)
    }

# create function to extract different informations from lm

lmtable<-function (var1,var2,data,signi=NULL){
  #var1= y data : colnames of data as.character, so "Y1" or c("Y1","Y2") for example
  #var2= x data : colnames of data as.character, so "X1" or c("X1","X2") for example
  #data= data in dataframe, variables in columns
  # if signi TRUE, round p-value with 2 digits and add *** if <0.001, ** if < 0.01, * if < 0.05.

  if (class(data) != "data.frame") stop("Not an object of class 'data.frame' ")
  Tabtemp<-data.frame(matrix(NA,ncol=6,nrow=length(var1)*length(var2)))
  for (i in 1:length(var2))
       {
  Tabtemp[((length(var1)*i)-(length(var1)-1)):(length(var1)*i),1]<-var1
  Tabtemp[((length(var1)*i)-(length(var1)-1)):(length(var1)*i),2]<-var2[i]
  colnames(Tabtemp)<-c("Var.y","Var.x","p-value","a","b","r^2")

  for (n in 1:length(var1))
  {
  Tabtemp[(((length(var1)*i)-(length(var1)-1))+n-1),3]<-lmp(lm(data[,var1[n]]~data[,var2[i]],data))

  Tabtemp[(((length(var1)*i)-(length(var1)-1))+n-1),4]<-coef(lm(data[,var1[n]]~data[,var2[i]],data))[1]

  Tabtemp[(((length(var1)*i)-(length(var1)-1))+n-1),5]<-coef(lm(data[,var1[n]]~data[,var2[i]],data))[2]

  Tabtemp[(((length(var1)*i)-(length(var1)-1))+n-1),6]<-summary(lm(data[,var1[n]]~data[,var2[i]],data))$r.squared
  }
  }

  signi2<-data.frame(matrix(NA,ncol=3,nrow=nrow(Tabtemp)))
  signi2[,1]<-ifelse(Tabtemp[,3]<0.001,paste0("***"),ifelse(Tabtemp[,3]<0.01,paste0("**"),ifelse(Tabtemp[,3]<0.05,paste0("*"),paste0(""))))
  signi2[,2]<-round(Tabtemp[,3],2)
  signi2[,3]<-paste0(format(signi2[,2],digits=2),signi2[,1])

  for (l in 1:nrow(Tabtemp))
    {
  Tabtemp$"p-value"[l]<-ifelse(is.null(signi),
         Tabtemp$"p-value"[l],
         ifelse(isTRUE(signi),
                paste0(signi2[,3][l]),
                Tabtemp$"p-value"[l]))
  }

   Tabtemp
}

# ------- EXAMPLES ------

lmtable("Y1","X1",Ex)
lmtable(c("Y1","Y2","Y3"),c("X1","X2"),Ex)
lmtable(c("Y1","Y2","Y3"),c("X1","X2"),Ex,signi=TRUE)

当然有一个比这个函数更快的解决方案,但它是可行的。

我在探索类似问题的建议解决方案时遇到了这个问题;我认为,为了将来的参考,它可能是值得更新可用的答案列表与解决方案利用扫帚包。

示例代码

x = cumsum(c(0, runif(100, -1, +1)))
y = cumsum(c(0, runif(100, -1, +1)))
fit = lm(y ~ x)
require(broom)
glance(fit)

结果

>> glance(fit)
  r.squared adj.r.squared    sigma statistic    p.value df    logLik      AIC      BIC deviance df.residual
1 0.5442762     0.5396729 1.502943  118.2368 1.3719e-18  2 -183.4527 372.9055 380.7508 223.6251          99

一边笔记

我发现glance函数很有用,因为它简洁地总结了关键值。结果被存储为data.frame,这使得进一步的操作很容易:

>> class(glance(fit))
[1] "data.frame"