我有熊猫数据帧df1和df2 (df1是香草数据帧,df2是由'STK_ID'和'RPT_Date'索引):

>>> df1
    STK_ID  RPT_Date  TClose   sales  discount
0   000568  20060331    3.69   5.975       NaN
1   000568  20060630    9.14  10.143       NaN
2   000568  20060930    9.49  13.854       NaN
3   000568  20061231   15.84  19.262       NaN
4   000568  20070331   17.00   6.803       NaN
5   000568  20070630   26.31  12.940       NaN
6   000568  20070930   39.12  19.977       NaN
7   000568  20071231   45.94  29.269       NaN
8   000568  20080331   38.75  12.668       NaN
9   000568  20080630   30.09  21.102       NaN
10  000568  20080930   26.00  30.769       NaN

>>> df2
                 TClose   sales  discount  net_sales    cogs
STK_ID RPT_Date                                             
000568 20060331    3.69   5.975       NaN      5.975   2.591
       20060630    9.14  10.143       NaN     10.143   4.363
       20060930    9.49  13.854       NaN     13.854   5.901
       20061231   15.84  19.262       NaN     19.262   8.407
       20070331   17.00   6.803       NaN      6.803   2.815
       20070630   26.31  12.940       NaN     12.940   5.418
       20070930   39.12  19.977       NaN     19.977   8.452
       20071231   45.94  29.269       NaN     29.269  12.606
       20080331   38.75  12.668       NaN     12.668   3.958
       20080630   30.09  21.102       NaN     21.102   7.431

我可以得到df2的最后3行

>>> df2.ix[-3:]
                 TClose   sales  discount  net_sales    cogs
STK_ID RPT_Date                                             
000568 20071231   45.94  29.269       NaN     29.269  12.606
       20080331   38.75  12.668       NaN     12.668   3.958
       20080630   30.09  21.102       NaN     21.102   7.431

而df1。Ix[-3:]给出所有行:

>>> df1.ix[-3:]
    STK_ID  RPT_Date  TClose   sales  discount
0   000568  20060331    3.69   5.975       NaN
1   000568  20060630    9.14  10.143       NaN
2   000568  20060930    9.49  13.854       NaN
3   000568  20061231   15.84  19.262       NaN
4   000568  20070331   17.00   6.803       NaN
5   000568  20070630   26.31  12.940       NaN
6   000568  20070930   39.12  19.977       NaN
7   000568  20071231   45.94  29.269       NaN
8   000568  20080331   38.75  12.668       NaN
9   000568  20080630   30.09  21.102       NaN
10  000568  20080930   26.00  30.769       NaN

为什么?如何获得df1 (dataframe没有索引)的最后3行? 熊猫0.10.1


当前回答

如何获得一个熊猫数据框架的最后N行?

如果你是按位置切片,__getitem__(即,用[]切片)工作得很好,这是我为这个问题找到的最简洁的解决方案。

pd.__version__
# '0.24.2'

df = pd.DataFrame({'A': list('aaabbbbc'), 'B': np.arange(1, 9)})
df

   A  B
0  a  1
1  a  2
2  a  3
3  b  4
4  b  5
5  b  6
6  b  7
7  c  8

df[-3:]

   A  B
5  b  6
6  b  7
7  c  8

这和调用df是一样的。例如Iloc [-3:) (Iloc内部委托给__getitem__)。


顺便说一句,如果你想找到每个组的最后N行,使用groupby和groupby .tail:

df.groupby('A').tail(2)

   A  B
1  a  2
2  a  3
5  b  6
6  b  7
7  c  8

其他回答

这是因为使用了整数索引(ix通过标签在-3上选择索引,而不是位置,这是经过设计的:参见pandas中的整数索引“陷阱”*)。

*在更新的版本中,pandas更倾向于使用loc或iloc来消除ix作为位置或标签的模糊性:

df.iloc[-3:]

去看医生。

正如Wes指出的,在这种特殊情况下,你应该使用tail!

不要忘记DataFrame.tail!例如df1.tail (10)

如何获得一个熊猫数据框架的最后N行?

如果你是按位置切片,__getitem__(即,用[]切片)工作得很好,这是我为这个问题找到的最简洁的解决方案。

pd.__version__
# '0.24.2'

df = pd.DataFrame({'A': list('aaabbbbc'), 'B': np.arange(1, 9)})
df

   A  B
0  a  1
1  a  2
2  a  3
3  b  4
4  b  5
5  b  6
6  b  7
7  c  8

df[-3:]

   A  B
5  b  6
6  b  7
7  c  8

这和调用df是一样的。例如Iloc [-3:) (Iloc内部委托给__getitem__)。


顺便说一句,如果你想找到每个组的最后N行,使用groupby和groupby .tail:

df.groupby('A').tail(2)

   A  B
1  a  2
2  a  3
5  b  6
6  b  7
7  c  8