是否有一种方便的方法来计算一个序列或一维numpy数组的百分位数?

我正在寻找类似Excel的百分位数函数。

我在NumPy的统计参考中找不到这个。我所能找到的是中位数(第50百分位),但没有更具体的东西。


当前回答

检查scipy。统计模块:

 scipy.stats.scoreatpercentile

其他回答

如果你需要答案是输入numpy数组的成员:

再加上numpy中的百分位数函数默认情况下将输出计算为输入向量中两个相邻项的线性加权平均。在某些情况下,人们可能希望返回的百分位数是向量的实际元素,在这种情况下,从v1.9.0开始,您可以使用“插值”选项,使用“低”、“高”或“最近”。

import numpy as np
x=np.random.uniform(10,size=(1000))-5.0

np.percentile(x,70) # 70th percentile

2.075966046220879

np.percentile(x,70,interpolation="nearest")

2.0729677997904314

后者是向量中的一个实际条目,而前者是与百分位数相邻的两个向量条目的线性插值

要计算一个系列的百分位数,运行:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

例如:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}

对于系列:用于描述函数

假设df具有以下列sales和id。你想计算销售额的百分比,它是这样工作的,

df['sales'].describe(percentiles = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

0.0: .0: minimum
1: maximum 
0.1 : 10th percentile and so on

您可能会对SciPy Stats包感兴趣。它有你所追求的百分位数函数和许多其他统计上的好处。

Percentile()在numpy中也可用。

import numpy as np
a = np.array([1,2,3,4,5])
p = np.percentile(a, 50) # return 50th percentile, e.g median.
print p
3.0

这张票让我相信他们不会很快将percentile()集成到numpy中。

import numpy as np
a = [154, 400, 1124, 82, 94, 108]
print np.percentile(a,95) # gives the 95th percentile