是否有一种方便的方法来计算一个序列或一维numpy数组的百分位数?

我正在寻找类似Excel的百分位数函数。

我在NumPy的统计参考中找不到这个。我所能找到的是中位数(第50百分位),但没有更具体的东西。


当前回答

检查scipy。统计模块:

 scipy.stats.scoreatpercentile

其他回答

顺便说一下,有一个百分位数函数的纯python实现,以防人们不想依赖scipy。函数复制如下:

## {{{ http://code.activestate.com/recipes/511478/ (r1)
import math
import functools

def percentile(N, percent, key=lambda x:x):
    """
    Find the percentile of a list of values.

    @parameter N - is a list of values. Note N MUST BE already sorted.
    @parameter percent - a float value from 0.0 to 1.0.
    @parameter key - optional key function to compute value from each element of N.

    @return - the percentile of the values
    """
    if not N:
        return None
    k = (len(N)-1) * percent
    f = math.floor(k)
    c = math.ceil(k)
    if f == c:
        return key(N[int(k)])
    d0 = key(N[int(f)]) * (c-k)
    d1 = key(N[int(c)]) * (k-f)
    return d0+d1

# median is 50th percentile.
median = functools.partial(percentile, percent=0.5)
## end of http://code.activestate.com/recipes/511478/ }}}

从Python 3.8开始,标准库附带了quantiles函数,作为统计模块的一部分:

from statistics import quantiles

quantiles([1, 2, 3, 4, 5], n=100)
# [0.06, 0.12, 0.18, 0.24, 0.3, 0.36, 0.42, 0.48, 0.54, 0.6, 0.66, 0.72, 0.78, 0.84, 0.9, 0.96, 1.02, 1.08, 1.14, 1.2, 1.26, 1.32, 1.38, 1.44, 1.5, 1.56, 1.62, 1.68, 1.74, 1.8, 1.86, 1.92, 1.98, 2.04, 2.1, 2.16, 2.22, 2.28, 2.34, 2.4, 2.46, 2.52, 2.58, 2.64, 2.7, 2.76, 2.82, 2.88, 2.94, 3.0, 3.06, 3.12, 3.18, 3.24, 3.3, 3.36, 3.42, 3.48, 3.54, 3.6, 3.66, 3.72, 3.78, 3.84, 3.9, 3.96, 4.02, 4.08, 4.14, 4.2, 4.26, 4.32, 4.38, 4.44, 4.5, 4.56, 4.62, 4.68, 4.74, 4.8, 4.86, 4.92, 4.98, 5.04, 5.1, 5.16, 5.22, 5.28, 5.34, 5.4, 5.46, 5.52, 5.58, 5.64, 5.7, 5.76, 5.82, 5.88, 5.94]
quantiles([1, 2, 3, 4, 5], n=100)[49] # 50th percentile (e.g median)
# 3.0

Quantiles为给定的分布区域返回n - 1个切割点的列表,分隔n个分位数区间(以等概率将dist划分为n个连续区间):

统计数据。分位数(dist, *, n=4, method='exclusive')

在我们的例子中,n(百分位数)是100。

我引导数据,然后绘制出10个样本的置信区间。置信区间表示概率在5%到95%之间的范围。

 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 import numpy as np
 import json
 import dc_stat_think as dcst

 data = [154, 400, 1124, 82, 94, 108]
 #print (np.percentile(data,[0.5,95])) # gives the 95th percentile

 bs_data = dcst.draw_bs_reps(data, np.mean, size=6*10)

 #print(np.reshape(bs_data,(24,6)))

 x= np.linspace(1,6,6)
 print(x)
 for (item1,item2,item3,item4,item5,item6) in bs_data.reshape((10,6)):
     line_data=[item1,item2,item3,item4,item5,item6]
     ci=np.percentile(line_data,[.025,.975])
     mean_avg=np.mean(line_data)
     fig, ax = plt.subplots()
     ax.plot(x,line_data)
     ax.fill_between(x, (line_data-ci[0]), (line_data+ci[1]), color='b', alpha=.1)
     ax.axhline(mean_avg,color='red')
     plt.show()

我通常看到的百分位数的定义期望从所提供的列表中找到P个百分比的值…这意味着结果必须来自集合,而不是集合元素之间的插值。为此,可以使用一个更简单的函数。

def percentile(N, P):
    """
    Find the percentile of a list of values

    @parameter N - A list of values.  N must be sorted.
    @parameter P - A float value from 0.0 to 1.0

    @return - The percentile of the values.
    """
    n = int(round(P * len(N) + 0.5))
    return N[n-1]

# A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# B = (15, 20, 35, 40, 50)
#
# print percentile(A, P=0.3)
# 4
# print percentile(A, P=0.8)
# 9
# print percentile(B, P=0.3)
# 20
# print percentile(B, P=0.8)
# 50

如果你想从所提供的列表中获得等于或低于P百分比的值,那么使用以下简单的修改:

def percentile(N, P):
    n = int(round(P * len(N) + 0.5))
    if n > 1:
        return N[n-2]
    else:
        return N[0]

或者使用@ijustlovemath建议的简化:

def percentile(N, P):
    n = max(int(round(P * len(N) + 0.5)), 2)
    return N[n-2]

要计算一个系列的百分位数,运行:

from scipy.stats import rankdata
import numpy as np

def calc_percentile(a, method='min'):
    if isinstance(a, list):
        a = np.asarray(a)
    return rankdata(a, method=method) / float(len(a))

例如:

a = range(20)
print {val: round(percentile, 3) for val, percentile in zip(a, calc_percentile(a))}
>>> {0: 0.05, 1: 0.1, 2: 0.15, 3: 0.2, 4: 0.25, 5: 0.3, 6: 0.35, 7: 0.4, 8: 0.45, 9: 0.5, 10: 0.55, 11: 0.6, 12: 0.65, 13: 0.7, 14: 0.75, 15: 0.8, 16: 0.85, 17: 0.9, 18: 0.95, 19: 1.0}