我有一个Express Node.js应用程序,但我也有一个机器学习算法在Python中使用。是否有一种方法可以从我的Node.js应用程序调用Python函数来利用机器学习库的强大功能?


当前回答

我在节点10和子进程1.0.2上。来自python的数据是一个字节数组,必须进行转换。这是另一个用python发出http请求的快速示例。

node

const process = spawn("python", ["services/request.py", "https://www.google.com"])

return new Promise((resolve, reject) =>{
    process.stdout.on("data", data =>{
        resolve(data.toString()); // <------------ by default converts to utf-8
    })
    process.stderr.on("data", reject)
})

request.py

import urllib.request
import sys

def karl_morrison_is_a_pedant():   
    response = urllib.request.urlopen(sys.argv[1])
    html = response.read()
    print(html)
    sys.stdout.flush()

karl_morrison_is_a_pedant()

p.s.不是一个人为的例子,因为节点的http模块不加载我需要做的一些请求

其他回答

你可以在NPM上查看我的套餐 https://www.npmjs.com/package/@guydev/native-python

它提供了一种非常简单而强大的方式来从node运行python函数

import { runFunction } from '@guydev/native-python'

const example = async () => {
   const input = [1,[1,2,3],{'foo':'bar'}]
   const { error, data } = await runFunction('/path/to/file.py','hello_world', '/path/to/python', input)

   // error will be null if no error occured.
   if (error) {
       console.log('Error: ', error)
   }

   else {
       console.log('Success: ', data)
       // prints data or null if function has no return value
   }
}

python模块

# module: file.py

def hello_world(a,b,c):
    print( type(a), a) 
    # <class 'int'>, 1

    print(type(b),b)
    # <class 'list'>, [1,2,3]

    print(type(c),c)
    # <class 'dict'>, {'foo':'bar'}

你可以把你的python编译,然后像调用javascript一样调用它。我已经成功地为screeps做了这件事,甚至让它在浏览器中运行la brython。

我知道的最简单的方法是使用“child_process”包,它随node一起打包。

然后你可以这样做:

const spawn = require("child_process").spawn;
const pythonProcess = spawn('python',["path/to/script.py", arg1, arg2, ...]);

然后你要做的就是确保你在python脚本中导入了sys,然后你就可以使用sys访问arg1了。Argv [1], arg2使用sys。Argv[2],等等。

要将数据发送回节点,只需在python脚本中执行以下操作:

print(dataToSendBack)
sys.stdout.flush()

然后node可以使用以下命令监听数据:

pythonProcess.stdout.on('data', (data) => {
 // Do something with the data returned from python script
});

由于这允许使用spawn将多个参数传递给脚本,您可以重新构造python脚本,以便其中一个参数决定调用哪个函数,而另一个参数传递给该函数,等等。

希望这是清楚的。如果有需要澄清的地方请告诉我。

之前的大多数答案都将承诺的成功称为on(“数据”),这不是正确的方法,因为如果你收到很多数据,你只会得到第一部分。相反,你必须在end事件上做。

const { spawn } = require('child_process');
const pythonDir = (__dirname + "/../pythonCode/"); // Path of python script folder
const python = pythonDir + "pythonEnv/bin/python"; // Path of the Python interpreter

/** remove warning that you don't care about */
function cleanWarning(error) {
    return error.replace(/Detector is not able to detect the language reliably.\n/g,"");
}

function callPython(scriptName, args) {
    return new Promise(function(success, reject) {
        const script = pythonDir + scriptName;
        const pyArgs = [script, JSON.stringify(args) ]
        const pyprog = spawn(python, pyArgs );
        let result = "";
        let resultError = "";
        pyprog.stdout.on('data', function(data) {
            result += data.toString();
        });

        pyprog.stderr.on('data', (data) => {
            resultError += cleanWarning(data.toString());
        });

        pyprog.stdout.on("end", function(){
            if(resultError == "") {
                success(JSON.parse(result));
            }else{
                console.error(`Python error, you can reproduce the error with: \n${python} ${script} ${pyArgs.join(" ")}`);
                const error = new Error(resultError);
                console.error(error);
                reject(resultError);
            }
        })
   });
}
module.exports.callPython = callPython;

电话:

const pythonCaller = require("../core/pythonCaller");
const result = await pythonCaller.callPython("preprocessorSentiment.py", {"thekeyYouwant": value});

python:

try:
    argu = json.loads(sys.argv[1])
except:
    raise Exception("error while loading argument")

Boa很适合您的需求,请参阅扩展Python tensorflow keras的示例。JavaScript中的顺序类。

const fs = require('fs');
const boa = require('@pipcook/boa');
const { tuple, enumerate } = boa.builtins();

const tf = boa.import('tensorflow');
const tfds = boa.import('tensorflow_datasets');

const { keras } = tf;
const { layers } = keras;

const [
  [ train_data, test_data ],
  info
] = tfds.load('imdb_reviews/subwords8k', boa.kwargs({
  split: tuple([ tfds.Split.TRAIN, tfds.Split.TEST ]),
  with_info: true,
  as_supervised: true
}));

const encoder = info.features['text'].encoder;
const padded_shapes = tuple([
  [ null ], tuple([])
]);
const train_batches = train_data.shuffle(1000)
  .padded_batch(10, boa.kwargs({ padded_shapes }));
const test_batches = test_data.shuffle(1000)
  .padded_batch(10, boa.kwargs({ padded_shapes }));

const embedding_dim = 16;
const model = keras.Sequential([
  layers.Embedding(encoder.vocab_size, embedding_dim),
  layers.GlobalAveragePooling1D(),
  layers.Dense(16, boa.kwargs({ activation: 'relu' })),
  layers.Dense(1, boa.kwargs({ activation: 'sigmoid' }))
]);

model.summary();
model.compile(boa.kwargs({
  optimizer: 'adam',
  loss: 'binary_crossentropy',
  metrics: [ 'accuracy' ]
}));

完整的示例在:https://github.com/alibaba/pipcook/blob/master/example/boa/tf2/word-embedding.js

我在另一个项目pipook中使用了Boa,这是为了解决JavaScript开发人员的机器学习问题,我们通过Boa库在Python生态系统(tensorflow,keras,pytorch)上实现了ML/DL模型。