我有一个Express Node.js应用程序,但我也有一个机器学习算法在Python中使用。是否有一种方法可以从我的Node.js应用程序调用Python函数来利用机器学习库的强大功能?


当前回答

您现在可以使用支持Python和Javascript的RPC库,例如zerorpc

从他们的头版:

node . js的客户

var zerorpc = require("zerorpc");

var client = new zerorpc.Client();
client.connect("tcp://127.0.0.1:4242");

client.invoke("hello", "RPC", function(error, res, more) {
    console.log(res);
});

Python服务器

import zerorpc

class HelloRPC(object):
    def hello(self, name):
        return "Hello, %s" % name

s = zerorpc.Server(HelloRPC())
s.bind("tcp://0.0.0.0:4242")
s.run()

其他回答

const util = require('util');
const exec = util.promisify(require('child_process').exec);
    
function runPythonFile() {
  const { stdout, stderr } = await exec('py ./path_to_python_file -s asdf -d pqrs');
  if (stdout) { // do something }
  if (stderr) { // do something }
}

欲了解更多信息,请访问Nodejs官方子进程页面:https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback

/*eslint-env es6*/
/*global require*/
/*global console*/
var express = require('express'); 
var app = express();

// Creates a server which runs on port 3000 and  
// can be accessed through localhost:3000
app.listen(3000, function() { 
    console.log('server running on port 3000'); 
} ) 

app.get('/name', function(req, res) {

    console.log('Running');

    // Use child_process.spawn method from  
    // child_process module and assign it 
    // to variable spawn 
    var spawn = require("child_process").spawn;   
    // Parameters passed in spawn - 
    // 1. type_of_script 
    // 2. list containing Path of the script 
    //    and arguments for the script  

    // E.g : http://localhost:3000/name?firstname=Levente
    var process = spawn('python',['apiTest.py', 
                        req.query.firstname]);

    // Takes stdout data from script which executed 
    // with arguments and send this data to res object
    var output = '';
    process.stdout.on('data', function(data) {

        console.log("Sending Info")
        res.end(data.toString('utf8'));
    });

    console.log(output);
}); 

这对我很管用。必须将python.exe添加到此代码段的路径变量中。另外,确保你的python脚本在你的项目文件夹中。

我知道的最简单的方法是使用“child_process”包,它随node一起打包。

然后你可以这样做:

const spawn = require("child_process").spawn;
const pythonProcess = spawn('python',["path/to/script.py", arg1, arg2, ...]);

然后你要做的就是确保你在python脚本中导入了sys,然后你就可以使用sys访问arg1了。Argv [1], arg2使用sys。Argv[2],等等。

要将数据发送回节点,只需在python脚本中执行以下操作:

print(dataToSendBack)
sys.stdout.flush()

然后node可以使用以下命令监听数据:

pythonProcess.stdout.on('data', (data) => {
 // Do something with the data returned from python script
});

由于这允许使用spawn将多个参数传递给脚本,您可以重新构造python脚本,以便其中一个参数决定调用哪个函数,而另一个参数传递给该函数,等等。

希望这是清楚的。如果有需要澄清的地方请告诉我。

许多例子都是过时的,并且涉及复杂的设置。您可以尝试JSPyBridge/pythonia(完全披露:我是作者)。它是一种普通的JS,可以让你操作外部Python对象,就好像它们存在于JS中一样。事实上,它实现了互操作性,因此Python代码可以通过回调和传递函数返回调用JS。

numpy + matplotlib的例子,用ES6导入系统:

import { py, python } from 'pythonia'
const np = await python('numpy')
const plot = await python('matplotlib.pyplot')

// Fixing random state for reproducibility
await np.random.seed(19680801)
const [mu, sigma] = [100, 15]
// Inline expression evaluation for operator overloading
const x = await py`${mu} + ${sigma} * ${np.random.randn(10000)}`

// the histogram of the data
const [n, bins, patches] = await plot.hist$(x, 50, { density: true, facecolor: 'g', alpha: 0.75 })
console.log('Distribution', await n) // Always await for all Python access
await plot.show()
python.exit()

通过CommonJS(没有顶级await):

const { py, python } = require('pythonia')
async function main() {
  const np = await python('numpy')
  const plot = await python('matplotlib.pyplot')
  ...
  // the rest of the code
}
main().then(() => python.exit()) // If you don't call this, the process won't quit by itself.

有Python背景,想要在Node.js应用程序中集成机器学习模型的人:

它使用了child_process核心模块:

const express = require('express')
const app = express()

app.get('/', (req, res) => {

    const { spawn } = require('child_process');
    const pyProg = spawn('python', ['./../pypy.py']);

    pyProg.stdout.on('data', function(data) {

        console.log(data.toString());
        res.write(data);
        res.end('end');
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

它不需要Python脚本中的sys模块。

下面是使用Promise执行任务的更模块化的方式:

const express = require('express')
const app = express()

let runPy = new Promise(function(success, nosuccess) {

    const { spawn } = require('child_process');
    const pyprog = spawn('python', ['./../pypy.py']);

    pyprog.stdout.on('data', function(data) {

        success(data);
    });

    pyprog.stderr.on('data', (data) => {

        nosuccess(data);
    });
});

app.get('/', (req, res) => {

    res.write('welcome\n');

    runPy.then(function(fromRunpy) {
        console.log(fromRunpy.toString());
        res.end(fromRunpy);
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))