我有一个Express Node.js应用程序,但我也有一个机器学习算法在Python中使用。是否有一种方法可以从我的Node.js应用程序调用Python函数来利用机器学习库的强大功能?


当前回答

您现在可以使用支持Python和Javascript的RPC库,例如zerorpc

从他们的头版:

node . js的客户

var zerorpc = require("zerorpc");

var client = new zerorpc.Client();
client.connect("tcp://127.0.0.1:4242");

client.invoke("hello", "RPC", function(error, res, more) {
    console.log(res);
});

Python服务器

import zerorpc

class HelloRPC(object):
    def hello(self, name):
        return "Hello, %s" % name

s = zerorpc.Server(HelloRPC())
s.bind("tcp://0.0.0.0:4242")
s.run()

其他回答

通过extrabacon, Python -shell模块是一种从Node.js运行Python脚本的简单方法,具有基本但有效的进程间通信和更好的错误处理。

安装:

npm: NPM安装python-shell。

或者用纱线: 纱线加蟒壳

运行一个简单的Python脚本:

const PythonShell = require('python-shell').PythonShell;

PythonShell.run('my_script.py', null, function (err) {
  if (err) throw err;
  console.log('finished');
});

运行带有参数和选项的Python脚本:

const PythonShell = require('python-shell').PythonShell;

var options = {
  mode: 'text',
  pythonPath: 'path/to/python',
  pythonOptions: ['-u'],
  scriptPath: 'path/to/my/scripts',
  args: ['value1', 'value2', 'value3']
};

PythonShell.run('my_script.py', options, function (err, results) {
  if (err) 
    throw err;
  // Results is an array consisting of messages collected during execution
  console.log('results: %j', results);
});

要获得完整的文档和源代码,请访问https://github.com/extrabacon/python-shell

你可以在NPM上查看我的套餐 https://www.npmjs.com/package/@guydev/native-python

它提供了一种非常简单而强大的方式来从node运行python函数

import { runFunction } from '@guydev/native-python'

const example = async () => {
   const input = [1,[1,2,3],{'foo':'bar'}]
   const { error, data } = await runFunction('/path/to/file.py','hello_world', '/path/to/python', input)

   // error will be null if no error occured.
   if (error) {
       console.log('Error: ', error)
   }

   else {
       console.log('Success: ', data)
       // prints data or null if function has no return value
   }
}

python模块

# module: file.py

def hello_world(a,b,c):
    print( type(a), a) 
    # <class 'int'>, 1

    print(type(b),b)
    # <class 'list'>, [1,2,3]

    print(type(c),c)
    # <class 'dict'>, {'foo':'bar'}

有Python背景,想要在Node.js应用程序中集成机器学习模型的人:

它使用了child_process核心模块:

const express = require('express')
const app = express()

app.get('/', (req, res) => {

    const { spawn } = require('child_process');
    const pyProg = spawn('python', ['./../pypy.py']);

    pyProg.stdout.on('data', function(data) {

        console.log(data.toString());
        res.write(data);
        res.end('end');
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))

它不需要Python脚本中的sys模块。

下面是使用Promise执行任务的更模块化的方式:

const express = require('express')
const app = express()

let runPy = new Promise(function(success, nosuccess) {

    const { spawn } = require('child_process');
    const pyprog = spawn('python', ['./../pypy.py']);

    pyprog.stdout.on('data', function(data) {

        success(data);
    });

    pyprog.stderr.on('data', (data) => {

        nosuccess(data);
    });
});

app.get('/', (req, res) => {

    res.write('welcome\n');

    runPy.then(function(fromRunpy) {
        console.log(fromRunpy.toString());
        res.end(fromRunpy);
    });
})

app.listen(4000, () => console.log('Application listening on port 4000!'))
const util = require('util');
const exec = util.promisify(require('child_process').exec);
    
function runPythonFile() {
  const { stdout, stderr } = await exec('py ./path_to_python_file -s asdf -d pqrs');
  if (stdout) { // do something }
  if (stderr) { // do something }
}

欲了解更多信息,请访问Nodejs官方子进程页面:https://nodejs.org/api/child_process.html#child_processexeccommand-options-callback

许多例子都是过时的,并且涉及复杂的设置。您可以尝试JSPyBridge/pythonia(完全披露:我是作者)。它是一种普通的JS,可以让你操作外部Python对象,就好像它们存在于JS中一样。事实上,它实现了互操作性,因此Python代码可以通过回调和传递函数返回调用JS。

numpy + matplotlib的例子,用ES6导入系统:

import { py, python } from 'pythonia'
const np = await python('numpy')
const plot = await python('matplotlib.pyplot')

// Fixing random state for reproducibility
await np.random.seed(19680801)
const [mu, sigma] = [100, 15]
// Inline expression evaluation for operator overloading
const x = await py`${mu} + ${sigma} * ${np.random.randn(10000)}`

// the histogram of the data
const [n, bins, patches] = await plot.hist$(x, 50, { density: true, facecolor: 'g', alpha: 0.75 })
console.log('Distribution', await n) // Always await for all Python access
await plot.show()
python.exit()

通过CommonJS(没有顶级await):

const { py, python } = require('pythonia')
async function main() {
  const np = await python('numpy')
  const plot = await python('matplotlib.pyplot')
  ...
  // the rest of the code
}
main().then(() => python.exit()) // If you don't call this, the process won't quit by itself.