与时间模块在python是可能测量经过的时间?如果是,我该怎么做?
我需要这样做,以便如果光标在小部件中停留了一段时间,就会发生一个事件。
与时间模块在python是可能测量经过的时间?如果是,我该怎么做?
我需要这样做,以便如果光标在小部件中停留了一段时间,就会发生一个事件。
当前回答
Time.time()就可以了。
import time
start = time.time()
# run your code
end = time.time()
elapsed = end - start
你可能想看看这个问题,但我认为没有必要。
其他回答
您需要导入时间,然后使用time.time()方法来了解当前时间。
import time
start_time=time.time() #taking current time as starting time
#here your code
elapsed_time=time.time()-start_time #again taking current time - starting time
为了最好地测量运行时间(自Python 3.3起),请使用time.perf_counter()。
返回性能计数器的值(以小数秒为单位),即具有最高可用分辨率的时钟,用于测量短时间。它确实包括睡眠期间所消耗的时间,并且是系统范围的。返回值的参考点未定义,因此只有连续调用结果之间的差值才是有效的。
对于小时/天量级的测量,您不关心亚秒级的分辨率,因此使用time.monotonic()代替。
返回单调时钟的值(以小数秒为单位),即不能倒退的时钟。时钟不受系统时钟更新的影响。返回值的参考点未定义,因此只有连续调用结果之间的差值才是有效的。
在许多实现中,它们实际上可能是相同的东西。
在3.3之前,您只能使用time.clock()。
在Unix上,返回以秒表示的浮点数形式的当前处理器时间。精度,实际上是“处理器时间”的定义,取决于同名C函数的定义。 在Windows上,该函数根据Win32函数QueryPerformanceCounter()返回自第一次调用该函数以来经过的时钟秒数,作为浮点数。分辨率通常优于1微秒。
Python 3.7更新
Python 3.7中的新功能是PEP 564——添加具有纳秒分辨率的新时间函数。
使用这些函数可以进一步消除舍入和浮点错误,特别是在测量非常短的周期时,或者应用程序(或Windows机器)是长时间运行的。
大约100天后,perf_counter()上的分辨率开始分解。因此,例如,在正常运行一年之后,它可以测量的最短间隔(大于0)将比启动时更大。
Python 3.8的更新
时间。时钟现在没了。
start_time = time.time()
# your code
elapsed_time = time.time() - start_time
你也可以编写简单的装饰器来简化各种函数执行时间的测量:
import time
from functools import wraps
PROF_DATA = {}
def profile(fn):
@wraps(fn)
def with_profiling(*args, **kwargs):
start_time = time.time()
ret = fn(*args, **kwargs)
elapsed_time = time.time() - start_time
if fn.__name__ not in PROF_DATA:
PROF_DATA[fn.__name__] = [0, []]
PROF_DATA[fn.__name__][0] += 1
PROF_DATA[fn.__name__][1].append(elapsed_time)
return ret
return with_profiling
def print_prof_data():
for fname, data in PROF_DATA.items():
max_time = max(data[1])
avg_time = sum(data[1]) / len(data[1])
print "Function %s called %d times. " % (fname, data[0]),
print 'Execution time max: %.3f, average: %.3f' % (max_time, avg_time)
def clear_prof_data():
global PROF_DATA
PROF_DATA = {}
用法:
@profile
def your_function(...):
...
您可以同时分析多个函数。然后要打印测量值,只需调用print_prof_data():
Time.time()就可以了。
import time
start = time.time()
# run your code
end = time.time()
elapsed = end - start
你可能想看看这个问题,但我认为没有必要。
这是一个更新的Vadim Shender的聪明的代码与表格输出:
import collections
import time
from functools import wraps
PROF_DATA = collections.defaultdict(list)
def profile(fn):
@wraps(fn)
def with_profiling(*args, **kwargs):
start_time = time.time()
ret = fn(*args, **kwargs)
elapsed_time = time.time() - start_time
PROF_DATA[fn.__name__].append(elapsed_time)
return ret
return with_profiling
Metrics = collections.namedtuple("Metrics", "sum_time num_calls min_time max_time avg_time fname")
def print_profile_data():
results = []
for fname, elapsed_times in PROF_DATA.items():
num_calls = len(elapsed_times)
min_time = min(elapsed_times)
max_time = max(elapsed_times)
sum_time = sum(elapsed_times)
avg_time = sum_time / num_calls
metrics = Metrics(sum_time, num_calls, min_time, max_time, avg_time, fname)
results.append(metrics)
total_time = sum([m.sum_time for m in results])
print("\t".join(["Percent", "Sum", "Calls", "Min", "Max", "Mean", "Function"]))
for m in sorted(results, reverse=True):
print("%.1f\t%.3f\t%d\t%.3f\t%.3f\t%.3f\t%s" % (100 * m.sum_time / total_time, m.sum_time, m.num_calls, m.min_time, m.max_time, m.avg_time, m.fname))
print("%.3f Total Time" % total_time)