1. NumPy中形状的含义
你写,“我知道字面上它是一个数字的列表,所有的列表都只包含一个数字”,但这是一种没有帮助的思考方式。
考虑NumPy数组的最佳方式是,它们由两部分组成,一个数据缓冲区(只是一个原始元素块)和一个描述如何解释数据缓冲区的视图。
例如,如果我们创建一个包含12个整数的数组:
>>> a = numpy.arange(12)
>>> a
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
a由一个数据缓冲区组成,它的排列方式如下:
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
以及描述如何解释数据的视图:
>>> a.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> a.dtype
dtype('int64')
>>> a.itemsize
8
>>> a.strides
(8,)
>>> a.shape
(12,)
这里的形状(12,)表示数组由一个从0到11的索引索引。从概念上讲,如果我们把这个索引标为i,数组a看起来就像这样:
i= 0 1 2 3 4 5 6 7 8 9 10 11
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
如果我们重塑一个数组,这不会改变数据缓冲区。相反,它创建了一个新视图,该视图描述了解释数据的不同方式。后:
>>> b = a.reshape((3, 4))
数组b拥有与a相同的数据缓冲区,但现在它由两个索引组成,分别从0到2和从0到3。如果我们把两个下标标为i和j,数组b看起来就像这样:
i= 0 0 0 0 1 1 1 1 2 2 2 2
j= 0 1 2 3 0 1 2 3 0 1 2 3
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
这意味着:
>>> b[2,1]
9
您可以看到第二个索引变化很快,而第一个索引变化缓慢。如果你想反过来,你可以指定order参数:
>>> c = a.reshape((3, 4), order='F')
结果是数组的索引是这样的:
i= 0 1 2 0 1 2 0 1 2 0 1 2
j= 0 0 0 1 1 1 2 2 2 3 3 3
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
这意味着:
>>> c[2,1]
5
现在应该清楚数组具有一个或多个尺寸为1的形状意味着什么了。后:
>>> d = a.reshape((12, 1))
数组d由两个下标组成,第一个下标从0到11,第二个下标总是0:
i= 0 1 2 3 4 5 6 7 8 9 10 11
j= 0 0 0 0 0 0 0 0 0 0 0 0
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
所以:
>>> d[10,0]
10
长度为1的维度是“自由的”(在某种意义上),所以没有什么可以阻止你去镇上:
>>> e = a.reshape((1, 2, 1, 6, 1))
给出一个这样的数组索引:
i= 0 0 0 0 0 0 0 0 0 0 0 0
j= 0 0 0 0 0 0 1 1 1 1 1 1
k= 0 0 0 0 0 0 0 0 0 0 0 0
l= 0 1 2 3 4 5 0 1 2 3 4 5
m= 0 0 0 0 0 0 0 0 0 0 0 0
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘
所以:
>>> e[0,1,0,0,0]
6
有关如何实现数组的更多细节,请参阅NumPy内部文档。
2. 怎么办呢?
因为numpy。重塑只是创建了一个新的视图,你不应该害怕在任何必要的时候使用它。当你想以不同的方式索引一个数组时,它是一个合适的工具。
然而,在长时间的计算中,通常可以在一开始就安排构造具有“正确”形状的数组,从而最大限度地减少重塑和转置的数量。但在没有看到导致需要重塑的实际背景之前,很难说应该改变什么。
你问题中的例子是:
numpy.dot(M[:,0], numpy.ones((1, R)))
但这是不现实的。首先,这个表达式:
M[:,0].sum()
计算结果更简单。第二,列0真的有什么特别之处吗?也许你真正需要的是:
M.sum(axis=0)