在Python中,当两个模块试图相互导入时会发生什么?更一般地说,如果多个模块试图在一个循环中导入会发生什么?
另见我能做什么关于“ImportError:不能导入名称X”或“AttributeError:…”(很可能是由于循环导入)”?关于可能导致的常见问题,以及如何重写代码以避免此类导入的建议。参见为什么循环导入看起来在调用堆栈中更上一层,但随后在更下一层引发ImportError ?有关问题发生的原因和方式的技术细节。
在Python中,当两个模块试图相互导入时会发生什么?更一般地说,如果多个模块试图在一个循环中导入会发生什么?
另见我能做什么关于“ImportError:不能导入名称X”或“AttributeError:…”(很可能是由于循环导入)”?关于可能导致的常见问题,以及如何重写代码以避免此类导入的建议。参见为什么循环导入看起来在调用堆栈中更上一层,但随后在更下一层引发ImportError ?有关问题发生的原因和方式的技术细节。
当前回答
我用下面的方法解决了这个问题,没有任何错误。 考虑两个文件a.py和b.py。
我把这个添加到a.py,它工作了。
if __name__ == "__main__":
main ()
a.py:
import b
y = 2
def main():
print ("a out")
print (b.x)
if __name__ == "__main__":
main ()
b.py:
import a
print ("b out")
x = 3 + a.y
得到的输出是
>>> b out
>>> a out
>>> 5
其他回答
bar.py
print('going to import foo')
from foo import printx
foo.py
print('trying to import bar')
import bar
def printx():
print('x')
$ python bar.py
going to import foo
trying to import bar
going to import foo
Traceback (most recent call last):
File "bar.py", line 2, in <module>
from foo import printx
File "/home/suhail/Desktop/temp/circularimport/foo.py", line 2, in <module>
import bar
File "/home/suhail/Desktop/temp/circularimport/bar.py", line 2, in <module>
from foo import printx
ImportError: cannot import name 'printx' from partially initialized module 'foo' (most likely due to a circular import) (/home/suhail/Desktop/temp/circularimport/foo.py)
正如其他答案所描述的,这种模式在python中是可以接受的:
def dostuff(self):
from foo import bar
...
这将避免在文件被其他模块导入时执行import语句。只有当存在逻辑循环依赖时,这才会失败。
大多数循环导入实际上不是逻辑循环导入,而是会引发ImportError错误,这是因为import()在调用时计算整个文件的顶级语句的方式。
如果你确实想要你的导入在顶部,这些ImportErrors几乎总是可以避免的:
考虑这个循环导入:
应用一个
# profiles/serializers.py
from images.serializers import SimplifiedImageSerializer
class SimplifiedProfileSerializer(serializers.Serializer):
name = serializers.CharField()
class ProfileSerializer(SimplifiedProfileSerializer):
recent_images = SimplifiedImageSerializer(many=True)
应用程序B
# images/serializers.py
from profiles.serializers import SimplifiedProfileSerializer
class SimplifiedImageSerializer(serializers.Serializer):
title = serializers.CharField()
class ImageSerializer(SimplifiedImageSerializer):
profile = SimplifiedProfileSerializer()
来自David Beazleys的精彩演讲:模块和包:生存和死亡!PyCon 2015, 1:54:00,这里是一个处理python循环导入的方法:
try:
from images.serializers import SimplifiedImageSerializer
except ImportError:
import sys
SimplifiedImageSerializer = sys.modules[__package__ + '.SimplifiedImageSerializer']
它尝试导入SimplifiedImageSerializer,如果ImportError被引发,因为它已经被导入,它将从importcache中拉出它。
PS:你必须用David Beazley的声音来阅读整篇文章。
Ok, I think I have a pretty cool solution. Let's say you have file a and file b. You have a def or a class in file b that you want to use in module a, but you have something else, either a def, class, or variable from file a that you need in your definition or class in file b. What you can do is, at the bottom of file a, after calling the function or class in file a that is needed in file b, but before calling the function or class from file b that you need for file a, say import b Then, and here is the key part, in all of the definitions or classes in file b that need the def or class from file a (let's call it CLASS), you say from a import CLASS
这是可行的,因为您可以导入文件b,而无需Python执行文件b中的任何导入语句,因此您可以避免任何循环导入。
例如:
文件:
class A(object):
def __init__(self, name):
self.name = name
CLASS = A("me")
import b
go = B(6)
go.dostuff
文件b:
class B(object):
def __init__(self, number):
self.number = number
def dostuff(self):
from a import CLASS
print "Hello " + CLASS.name + ", " + str(number) + " is an interesting number."
喉咙痛。
这里有个例子让我震惊!
foo.py
import bar
class gX(object):
g = 10
bar.py
from foo import gX
o = gX()
main.py
import foo
import bar
print "all done"
在命令行:$ python main.py
Traceback (most recent call last):
File "m.py", line 1, in <module>
import foo
File "/home/xolve/foo.py", line 1, in <module>
import bar
File "/home/xolve/bar.py", line 1, in <module>
from foo import gX
ImportError: cannot import name gX
循环导入可能令人困惑,因为导入做了两件事:
它执行导入的模块代码 将导入的模块添加到导入模块全局符号表中
前者只执行一次,而后者则在每个import语句中执行。循环导入会在导入模块使用已导入的模块和部分执行的代码时产生这种情况。因此,它将看不到import语句后创建的对象。下面的代码示例演示了它。
循环进口并不是要不惜一切代价避免的终极祸害。在一些框架中,比如Flask,它们是很自然的,调整你的代码来消除它们并不会让代码变得更好。
main.py
print 'import b'
import b
print 'a in globals() {}'.format('a' in globals())
print 'import a'
import a
print 'a in globals() {}'.format('a' in globals())
if __name__ == '__main__':
print 'imports done'
print 'b has y {}, a is b.a {}'.format(hasattr(b, 'y'), a is b.a)
b.by
print "b in, __name__ = {}".format(__name__)
x = 3
print 'b imports a'
import a
y = 5
print "b out"
a.py
print 'a in, __name__ = {}'.format(__name__)
print 'a imports b'
import b
print 'b has x {}'.format(hasattr(b, 'x'))
print 'b has y {}'.format(hasattr(b, 'y'))
print "a out"
Python main.py输出带有注释
import b
b in, __name__ = b # b code execution started
b imports a
a in, __name__ = a # a code execution started
a imports b # b code execution is already in progress
b has x True
b has y False # b defines y after a import,
a out
b out
a in globals() False # import only adds a to main global symbol table
import a
a in globals() True
imports done
b has y True, a is b.a True # all b objects are available