在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。

我把它贴在这里只是为了参考。

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

其他回答

首先求两个矩阵的差。然后,使用numpy的multiply命令应用元素乘法。然后,求元素与新矩阵相乘的和。最后,求求和的平方根。

def findEuclideanDistance(a, b):
    euclidean_distance = a - b
    euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
    euclidean_distance = np.sqrt(euclidean_distance)
    return euclidean_distance

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

用NumPy或一般的Python做这件事的最好方法是什么?我有:

最好的方法是最安全的,也是最快的

我建议使用低流量来获得可靠的结果,因为与编写自己的平方根计算器相比,下溢和溢出的几率非常小

我们来看看数学。函数,np。Hypot vs vanilla np.sqrt(np.sum(np.数组([i, j, k])) ** 2,轴=1))

i, j, k = 1e+200, 1e+200, 1e+200
math.hypot(i, j, k)
# 1.7320508075688773e+200
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# RuntimeWarning: overflow encountered in square

速度智慧的数学。Hypot看起来更好

%%timeit
math.hypot(i, j, k)
# 100 ns ± 1.05 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%%timeit
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# 6.41 µs ± 33.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

下溢

i, j = 1e-200, 1e-200
np.sqrt(i**2+j**2)
# 0.0

溢出

i, j = 1e+200, 1e+200
np.sqrt(i**2+j**2)
# inf

没有下溢

i, j = 1e-200, 1e-200
np.hypot(i, j)
# 1.414213562373095e-200

没有溢出

i, j = 1e+200, 1e+200
np.hypot(i, j)
# 1.414213562373095e+200

请参考

这个公式很容易用

distance = np.sqrt(np.sum(np.square(a-b)))

它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。

import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]

首先将list更改为numpy数组,并像这样做:print(np.linalg.norm(np.array(a) - np.array(b)))。第二种方法直接从python列表as: print(np.linalg.norm(np.subtract(a,b)))