在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。

我把它贴在这里只是为了参考。

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

其他回答

import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]

首先将list更改为numpy数组,并像这样做:print(np.linalg.norm(np.array(a) - np.array(b)))。第二种方法直接从python列表as: print(np.linalg.norm(np.subtract(a,b)))

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

计算多维空间的欧氏距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845
import numpy as np
from scipy.spatial import distance
input_arr = np.array([[0,3,0],[2,0,0],[0,1,3],[0,1,2],[-1,0,1],[1,1,1]]) 
test_case = np.array([0,0,0])
dst=[]
for i in range(0,6):
    temp = distance.euclidean(test_case,input_arr[i])
    dst.append(temp)
print(dst)

首先求两个矩阵的差。然后,使用numpy的multiply命令应用元素乘法。然后,求元素与新矩阵相乘的和。最后,求求和的平方根。

def findEuclideanDistance(a, b):
    euclidean_distance = a - b
    euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
    euclidean_distance = np.sqrt(euclidean_distance)
    return euclidean_distance