我有一些测试数据,想为每个项目创建一个单元测试。我的第一个想法是这样做的:

import unittest

l = [["foo", "a", "a",], ["bar", "a", "b"], ["lee", "b", "b"]]

class TestSequence(unittest.TestCase):
    def testsample(self):
        for name, a,b in l:
            print "test", name
            self.assertEqual(a,b)

if __name__ == '__main__':
    unittest.main()

这样做的缺点是它在一个测试中处理所有数据。我想在飞行中为每个项目生成一个测试。有什么建议吗?


当前回答

我有麻烦使这些工作为setUpClass。

下面是Javier回答的一个版本,它允许setUpClass访问动态分配的属性。

import unittest


class GeneralTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        print ''
        print cls.p1
        print cls.p2

    def runTest1(self):
        self.assertTrue((self.p2 - self.p1) == 1)

    def runTest2(self):
        self.assertFalse((self.p2 - self.p1) == 2)


def load_tests(loader, tests, pattern):
    test_cases = unittest.TestSuite()
    for p1, p2 in [(1, 2), (3, 4)]:
        clsname = 'TestCase_{}_{}'.format(p1, p2)
        dct = {
            'p1': p1,
            'p2': p2,
        }
        cls = type(clsname, (GeneralTestCase,), dct)
        test_cases.addTest(cls('runTest1'))
        test_cases.addTest(cls('runTest2'))
    return test_cases

输出

1
2
..
3
4
..
----------------------------------------------------------------------
Ran 4 tests in 0.000s

OK

其他回答

这可以使用元类优雅地解决:

import unittest

l = [["foo", "a", "a",], ["bar", "a", "b"], ["lee", "b", "b"]]

class TestSequenceMeta(type):
    def __new__(mcs, name, bases, dict):

        def gen_test(a, b):
            def test(self):
                self.assertEqual(a, b)
            return test

        for tname, a, b in l:
            test_name = "test_%s" % tname
            dict[test_name] = gen_test(a,b)
        return type.__new__(mcs, name, bases, dict)

class TestSequence(unittest.TestCase):
    __metaclass__ = TestSequenceMeta

if __name__ == '__main__':
    unittest.main()

还有一个假说,它增加了模糊或基于属性的测试。

这是一种非常强大的测试方法。

我发现这很适合我的目的,特别是当我需要生成在数据集合上执行稍微不同的过程的测试时。

import unittest

def rename(newName):
    def renamingFunc(func):
        func.__name__ == newName
        return func
    return renamingFunc

class TestGenerator(unittest.TestCase):

    TEST_DATA = {}

    @classmethod
    def generateTests(cls):
        for dataName, dataValue in TestGenerator.TEST_DATA:
            for func in cls.getTests(dataName, dataValue):
                setattr(cls, "test_{:s}_{:s}".format(func.__name__, dataName), func)

    @classmethod
    def getTests(cls):
        raise(NotImplementedError("This must be implemented"))

class TestCluster(TestGenerator):

    TEST_CASES = []

    @staticmethod
    def getTests(dataName, dataValue):

        def makeTest(case):

            @rename("{:s}".format(case["name"]))
            def test(self):
                # Do things with self, case, data
                pass

            return test

        return [makeTest(c) for c in TestCluster.TEST_CASES]

TestCluster.generateTests()

TestGenerator类可以用来生成不同的测试用例集,比如TestCluster。

TestCluster可以被认为是TestGenerator接口的实现。

除了使用setattr,我们还可以在Python 3.2及更高版本中使用load_tests。

class Test(unittest.TestCase):
    pass

def _test(self, file_name):
    open(file_name, 'r') as f:
        self.assertEqual('test result',f.read())

def _generate_test(file_name):
    def test(self):
        _test(self, file_name)
    return test

def _generate_tests():
    for file in files:
        file_name = os.path.splitext(os.path.basename(file))[0]
        setattr(Test, 'test_%s' % file_name, _generate_test(file))

test_cases = (Test,)

def load_tests(loader, tests, pattern):
    _generate_tests()
    suite = TestSuite()
    for test_class in test_cases:
        tests = loader.loadTestsFromTestCase(test_class)
        suite.addTests(tests)
    return suite

if __name__ == '__main__':
    _generate_tests()
    unittest.main()

这可以通过使用pytest来完成。只需要编写test_me.py文件的内容:

import pytest

@pytest.mark.parametrize('name, left, right', [['foo', 'a', 'a'],
                                               ['bar', 'a', 'b'],
                                               ['baz', 'b', 'b']])
def test_me(name, left, right):
    assert left == right, name

并使用py命令运行测试。Test——tb=短test_me.py。然后输出如下所示:

=========================== test session starts ============================
platform darwin -- Python 2.7.6 -- py-1.4.23 -- pytest-2.6.1
collected 3 items

test_me.py .F.

================================= FAILURES =================================
_____________________________ test_me[bar-a-b] _____________________________
test_me.py:8: in test_me
    assert left == right, name
E   AssertionError: bar
==================== 1 failed, 2 passed in 0.01 seconds ====================

这很简单!此外,pytest还有更多的功能,如fixture、标记、断言等。