比较两个NumPy数组相等性的最简单方法是什么(其中相等性定义为:A = B iff对于所有索引i: A[i] == B[i])?
简单地使用==给我一个布尔数组:
>>> numpy.array([1,1,1]) == numpy.array([1,1,1])
array([ True, True, True], dtype=bool)
我是否需要和这个数组的元素来确定数组是否相等,或者有更简单的比较方法吗?
比较两个NumPy数组相等性的最简单方法是什么(其中相等性定义为:A = B iff对于所有索引i: A[i] == B[i])?
简单地使用==给我一个布尔数组:
>>> numpy.array([1,1,1]) == numpy.array([1,1,1])
array([ True, True, True], dtype=bool)
我是否需要和这个数组的元素来确定数组是否相等,或者有更简单的比较方法吗?
当前回答
(A==B).all()解决方案非常简洁,但有一些用于此任务的内置函数。即array_equal, allclose和array_equiv。
(尽管,一些快速的测试似乎表明(A==B).all()方法是最快的,这有点奇怪,因为它必须分配一个全新的数组。)
其他回答
(A==B).all()
测试数组(A==B)的所有值是否为True。
注意:也许你还想测试A和B的形状,比如A.shape == B.shape
特殊情况和替代方案(来自dbaupp的回答和yoavram的评论)
应当指出的是:
这种解决方案在特定情况下可能会有奇怪的行为:如果a或B中有一个是空的,而另一个包含单个元素,则返回True。由于某些原因,比较A==B返回一个空数组,all操作符返回True。 另一个风险是,如果A和B没有相同的形状,并且不可广播,那么这种方法将引发一个错误。
总之,如果你对a和B的形状有疑问,或者只是想要安全:使用其中一个专门的功能:
np.array_equal(A,B) # test if same shape, same elements values
np.array_equiv(A,B) # test if broadcastable shape, same elements values
np.allclose(A,B,...) # test if same shape, elements have close enough values
在其他答案之上,你现在可以使用断言:
numpy.testing.assert_array_equal(x, y)
还有类似的函数,如numpy.testing.assert_almost_equal()
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html
现在使用np.array_equal。从文档:
np.array_equal([1, 2], [1, 2])
True
np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
np.array_equal([1, 2], [1, 2, 3])
False
np.array_equal([1, 2], [1, 4])
False
(A==B).all()解决方案非常简洁,但有一些用于此任务的内置函数。即array_equal, allclose和array_equiv。
(尽管,一些快速的测试似乎表明(A==B).all()方法是最快的,这有点奇怪,因为它必须分配一个全新的数组。)
让我们使用下面的代码段来衡量性能。
import numpy as np
import time
exec_time0 = []
exec_time1 = []
exec_time2 = []
sizeOfArray = 5000
numOfIterations = 200
for i in xrange(numOfIterations):
A = np.random.randint(0,255,(sizeOfArray,sizeOfArray))
B = np.random.randint(0,255,(sizeOfArray,sizeOfArray))
a = time.clock()
res = (A==B).all()
b = time.clock()
exec_time0.append( b - a )
a = time.clock()
res = np.array_equal(A,B)
b = time.clock()
exec_time1.append( b - a )
a = time.clock()
res = np.array_equiv(A,B)
b = time.clock()
exec_time2.append( b - a )
print 'Method: (A==B).all(), ', np.mean(exec_time0)
print 'Method: np.array_equal(A,B),', np.mean(exec_time1)
print 'Method: np.array_equiv(A,B),', np.mean(exec_time2)
输出
Method: (A==B).all(), 0.03031857
Method: np.array_equal(A,B), 0.030025185
Method: np.array_equiv(A,B), 0.030141515
根据上面的结果,numpy方法似乎比==运算符和all()方法的组合更快,通过比较numpy方法,最快的方法似乎是numpy。array_equal方法。