比较两个NumPy数组相等性的最简单方法是什么(其中相等性定义为:A = B iff对于所有索引i: A[i] == B[i])?
简单地使用==给我一个布尔数组:
>>> numpy.array([1,1,1]) == numpy.array([1,1,1])
array([ True, True, True], dtype=bool)
我是否需要和这个数组的元素来确定数组是否相等,或者有更简单的比较方法吗?
比较两个NumPy数组相等性的最简单方法是什么(其中相等性定义为:A = B iff对于所有索引i: A[i] == B[i])?
简单地使用==给我一个布尔数组:
>>> numpy.array([1,1,1]) == numpy.array([1,1,1])
array([ True, True, True], dtype=bool)
我是否需要和这个数组的元素来确定数组是否相等,或者有更简单的比较方法吗?
当前回答
为了完整起见。我将添加 比较两个数组的Pandas方法:
import numpy as np
a = np.arange(0.0, 10.2, 0.12)
b = np.arange(0.0, 10.2, 0.12)
ap = pd.DataFrame(a)
bp = pd.DataFrame(b)
ap.equals(bp)
True
供你参考:如果你正在寻找如何 比较向量,数组或R中的数据框架。 你可以用:
identical(iris1, iris2)
#[1] TRUE
all.equal(array1, array2)
#> [1] TRUE
其他回答
为了完整起见。我将添加 比较两个数组的Pandas方法:
import numpy as np
a = np.arange(0.0, 10.2, 0.12)
b = np.arange(0.0, 10.2, 0.12)
ap = pd.DataFrame(a)
bp = pd.DataFrame(b)
ap.equals(bp)
True
供你参考:如果你正在寻找如何 比较向量,数组或R中的数据框架。 你可以用:
identical(iris1, iris2)
#[1] TRUE
all.equal(array1, array2)
#> [1] TRUE
在其他答案之上,你现在可以使用断言:
numpy.testing.assert_array_equal(x, y)
还有类似的函数,如numpy.testing.assert_almost_equal()
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html
(A==B).all()解决方案非常简洁,但有一些用于此任务的内置函数。即array_equal, allclose和array_equiv。
(尽管,一些快速的测试似乎表明(A==B).all()方法是最快的,这有点奇怪,因为它必须分配一个全新的数组。)
通常两个数组会有一些小的数值错误,
你可以使用numpy.allclose(A,B),而不是(A==B).all()。返回bool值True/False
现在使用np.array_equal。从文档:
np.array_equal([1, 2], [1, 2])
True
np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
np.array_equal([1, 2], [1, 2, 3])
False
np.array_equal([1, 2], [1, 4])
False