我使用spark-csv加载数据到一个DataFrame。我想做一个简单的查询并显示内容:

val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").load("my.csv")
df.registerTempTable("tasks")
results = sqlContext.sql("select col from tasks");
results.show()

山坳似乎被截断了:

scala> results.show();
+--------------------+
|                 col|
+--------------------+
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:15:...|
|2015-11-06 07:15:...|
|2015-11-16 07:15:...|
|2015-11-16 07:21:...|
|2015-11-16 07:21:...|
|2015-11-16 07:21:...|
+--------------------+

如何显示列的全部内容?


当前回答

其他的解都很好。如果这些是你的目标:

没有列的截断, 没有行损失, 快, 非常高效。

这两行很有用……

    df.persist
    df.show(df.count, false) // in Scala or 'False' in Python

通过持久化,当使用持久化或缓存来维护执行器内部的临时底层数据帧结构时,执行器的两个操作count和show会更快更有效。请参阅有关持久化和缓存的更多信息。

其他回答

如果输入results.show(false),结果将不会被截断

皮斯帕克

在下面的代码中,df是dataframe的名称。第一个参数是动态显示数据帧中的所有行,而不是硬编码一个数值。第二个参数将负责显示完整的列内容,因为该值被设置为False。

df.show(df.count(),False)


规模

在下面的代码中,df是dataframe的名称。第一个参数是动态显示数据帧中的所有行,而不是硬编码一个数值。第二个参数将负责显示完整的列内容,因为该值被设置为false。

df.show(df.count().toInt,false)

Results.show (false)将显示完整的列内容。

Show方法默认限制为20行,在false前添加数字将显示更多行。

用Spark python的方式,记住:

如果你必须从数据帧中显示数据,使用show(truncate=False)方法。 否则,如果你必须从流数据帧视图(结构化流)显示数据,使用writeStream.format("console")。option("truncate", False).start()方法

希望它能帮助到一些人。

试一试 假df.show(20日)

注意,如果您没有指定要显示的行数,它将显示 20行,但将执行所有的数据框架,这将花费更多的时间!