当我将因子转换为数字或整数时,我得到的是底层的级别代码,而不是数字形式的值。
f <- factor(sample(runif(5), 20, replace = TRUE))
## [1] 0.0248644019011408 0.0248644019011408 0.179684827337041
## [4] 0.0284090070053935 0.363644931698218 0.363644931698218
## [7] 0.179684827337041 0.249704354675487 0.249704354675487
## [10] 0.0248644019011408 0.249704354675487 0.0284090070053935
## [13] 0.179684827337041 0.0248644019011408 0.179684827337041
## [16] 0.363644931698218 0.249704354675487 0.363644931698218
## [19] 0.179684827337041 0.0284090070053935
## 5 Levels: 0.0248644019011408 0.0284090070053935 ... 0.363644931698218
as.numeric(f)
## [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2
as.integer(f)
## [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2
我不得不求助于粘贴来获得实际值:
as.numeric(paste(f))
## [1] 0.02486440 0.02486440 0.17968483 0.02840901 0.36364493 0.36364493
## [7] 0.17968483 0.24970435 0.24970435 0.02486440 0.24970435 0.02840901
## [13] 0.17968483 0.02486440 0.17968483 0.36364493 0.24970435 0.36364493
## [19] 0.17968483 0.02840901
有没有更好的方法将因数转换为数字?
如果有数据帧,可以使用hablar::convert。语法很简单:
样本df
library(hablar)
library(dplyr)
df <- dplyr::tibble(a = as.factor(c("7", "3")),
b = as.factor(c("1.5", "6.3")))
解决方案
df %>%
convert(num(a, b))
给你:
# A tibble: 2 x 2
a b
<dbl> <dbl>
1 7. 1.50
2 3. 6.30
或者如果你想让一列是整数,一列是数字:
df %>%
convert(int(a),
num(b))
结果:
# A tibble: 2 x 2
a b
<int> <dbl>
1 7 1.50
2 3 6.30
对于级别完全为数值的因子,Type.convert (f)是另一个基本选项。
性能方面,它相当于as.numeric(as.character(f)),但速度远不如as.numeric(levels(f))[f]。
identical(type.convert(f), as.numeric(levels(f))[f])
[1] TRUE
也就是说,如果vector在第一个实例中被创建为因子的原因没有被解决(即它可能包含一些不能被强制为数字的字符),那么这种方法将不起作用,它将返回一个因子。
levels(f)[1] <- "some character level"
identical(type.convert(f), as.numeric(levels(f))[f])
[1] FALSE
如果有数据帧,可以使用hablar::convert。语法很简单:
样本df
library(hablar)
library(dplyr)
df <- dplyr::tibble(a = as.factor(c("7", "3")),
b = as.factor(c("1.5", "6.3")))
解决方案
df %>%
convert(num(a, b))
给你:
# A tibble: 2 x 2
a b
<dbl> <dbl>
1 7. 1.50
2 3. 6.30
或者如果你想让一列是整数,一列是数字:
df %>%
convert(int(a),
num(b))
结果:
# A tibble: 2 x 2
a b
<int> <dbl>
1 7 1.50
2 3 6.30
从我能读到的许多答案中,唯一给出的方法是根据因素的数量扩大变量的数量。如果你有一个级别为“dog”和“cat”的变量“pet”,你最终会得到pet_dog和pet_cat。
在我的例子中,我希望保持相同数量的变量,通过将因子变量转换为数值变量,以一种可以应用于许多级别的许多变量的方式,例如cat=1和dog=0。
对应的解决方案如下:
crime <- data.frame(city = c("SF", "SF", "NYC"),
year = c(1990, 2000, 1990),
crime = 1:3)
indx <- sapply(crime, is.factor)
crime[indx] <- lapply(crime[indx], function(x){
listOri <- unique(x)
listMod <- seq_along(listOri)
res <- factor(x, levels=listOri)
res <- as.numeric(res)
return(res)
}
)