当我将因子转换为数字或整数时,我得到的是底层的级别代码,而不是数字形式的值。

f <- factor(sample(runif(5), 20, replace = TRUE))
##  [1] 0.0248644019011408 0.0248644019011408 0.179684827337041 
##  [4] 0.0284090070053935 0.363644931698218  0.363644931698218 
##  [7] 0.179684827337041  0.249704354675487  0.249704354675487 
## [10] 0.0248644019011408 0.249704354675487  0.0284090070053935
## [13] 0.179684827337041  0.0248644019011408 0.179684827337041 
## [16] 0.363644931698218  0.249704354675487  0.363644931698218 
## [19] 0.179684827337041  0.0284090070053935
## 5 Levels: 0.0248644019011408 0.0284090070053935 ... 0.363644931698218

as.numeric(f)
##  [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2

as.integer(f)
##  [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2

我不得不求助于粘贴来获得实际值:

as.numeric(paste(f))
##  [1] 0.02486440 0.02486440 0.17968483 0.02840901 0.36364493 0.36364493
##  [7] 0.17968483 0.24970435 0.24970435 0.02486440 0.24970435 0.02840901
## [13] 0.17968483 0.02486440 0.17968483 0.36364493 0.24970435 0.36364493
## [19] 0.17968483 0.02840901

有没有更好的方法将因数转换为数字?


当前回答

如果有数据帧,可以使用hablar::convert。语法很简单:

样本df

library(hablar)
library(dplyr)

df <- dplyr::tibble(a = as.factor(c("7", "3")),
                    b = as.factor(c("1.5", "6.3")))

解决方案

df %>% 
  convert(num(a, b))

给你:

# A tibble: 2 x 2
      a     b
  <dbl> <dbl>
1    7.  1.50
2    3.  6.30

或者如果你想让一列是整数,一列是数字:

df %>% 
  convert(int(a),
          num(b))

结果:

# A tibble: 2 x 2
      a     b
  <int> <dbl>
1     7  1.50
2     3  6.30

其他回答

在游戏后期,偶然地,我发现trimws()可以将因子(3:5)转换为c(“3”,“4”,“5”)。然后可以调用as.numeric()。那就是:

as.numeric(trimws(x_factor_var))

对于级别完全为数值的因子,Type.convert (f)是另一个基本选项。

性能方面,它相当于as.numeric(as.character(f)),但速度远不如as.numeric(levels(f))[f]。

identical(type.convert(f), as.numeric(levels(f))[f])

[1] TRUE

也就是说,如果vector在第一个实例中被创建为因子的原因没有被解决(即它可能包含一些不能被强制为数字的字符),那么这种方法将不起作用,它将返回一个因子。

levels(f)[1] <- "some character level"
identical(type.convert(f), as.numeric(levels(f))[f])

[1] FALSE

最简单的方法是使用包varhandle中的unfactor函数,它可以接受一个因子向量,甚至一个数据帧:

unfactor(your_factor_variable)

下面这个例子可以作为一个快速的开始:

x <- rep(c("a", "b", "c"), 20)
y <- rep(c(1, 1, 0), 20)

class(x)  # -> "character"
class(y)  # -> "numeric"

x <- factor(x)
y <- factor(y)

class(x)  # -> "factor"
class(y)  # -> "factor"

library(varhandle)
x <- unfactor(x)
y <- unfactor(y)

class(x)  # -> "character"
class(y)  # -> "numeric"

你也可以在数据框架上使用它。例如虹膜数据集:

sapply(iris, class)

萼片。花萼长度。宽度花瓣。花瓣长度。宽度的物种 "数字" "数字" "数字" "因素"

# load the package
library("varhandle")
# pass the iris to unfactor
tmp_iris <- unfactor(iris)
# check the classes of the columns
sapply(tmp_iris, class)

萼片。花萼长度。宽度花瓣。花瓣长度。宽度的物种 "数字" "数字" "数字" "字符"

# check if the last column is correctly converted
tmp_iris$Species

[1] "setosa" "setosa" "setosa" "setosa" "setosa" [6] "setosa" "setosa" "setosa" "setosa" "setosa" [11] "setosa" "setosa" "setosa" "setosa" "setosa" [16] "setosa" "setosa" "setosa" "setosa" "setosa" [21] "setosa" "setosa" "setosa" "setosa" "setosa" [26] "setosa" "setosa" "setosa" "setosa" "setosa" [31] "setosa" "setosa" "setosa" "setosa" "setosa" [36] "setosa" "setosa" "setosa" "setosa" "setosa" [41] "setosa" "setosa" "setosa" "setosa" "setosa" [46] "setosa" "setosa" "setosa" "setosa" "setosa" [51] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [56] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [61] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [66] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [71] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [76] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [81] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [86] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [91] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [96] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [101] "virginica" "virginica" "virginica" "virginica" "virginica" [106] "virginica" "virginica" "virginica" "virginica" "virginica" [111] "virginica" "virginica" "virginica" "virginica" "virginica" [116] "virginica" "virginica" "virginica" "virginica" "virginica" [121] "virginica" "virginica" "virginica" "virginica" "virginica" [126] "virginica" "virginica" "virginica" "virginica" "virginica" [131] "virginica" "virginica" "virginica" "virginica" "virginica" [136] "virginica" "virginica" "virginica" "virginica" "virginica" [141] "virginica" "virginica" "virginica" "virginica" "virginica" [146] "virginica" "virginica" "virginica" "virginica" "virginica"

从我能读到的许多答案中,唯一给出的方法是根据因素的数量扩大变量的数量。如果你有一个级别为“dog”和“cat”的变量“pet”,你最终会得到pet_dog和pet_cat。

在我的例子中,我希望保持相同数量的变量,通过将因子变量转换为数值变量,以一种可以应用于许多级别的许多变量的方式,例如cat=1和dog=0。

对应的解决方案如下:

crime <- data.frame(city = c("SF", "SF", "NYC"),
                    year = c(1990, 2000, 1990),
                    crime = 1:3)

indx <- sapply(crime, is.factor)

crime[indx] <- lapply(crime[indx], function(x){ 
  listOri <- unique(x)
  listMod <- seq_along(listOri)
  res <- factor(x, levels=listOri)
  res <- as.numeric(res)
  return(res)
}
)

如果有数据帧,可以使用hablar::convert。语法很简单:

样本df

library(hablar)
library(dplyr)

df <- dplyr::tibble(a = as.factor(c("7", "3")),
                    b = as.factor(c("1.5", "6.3")))

解决方案

df %>% 
  convert(num(a, b))

给你:

# A tibble: 2 x 2
      a     b
  <dbl> <dbl>
1    7.  1.50
2    3.  6.30

或者如果你想让一列是整数,一列是数字:

df %>% 
  convert(int(a),
          num(b))

结果:

# A tibble: 2 x 2
      a     b
  <int> <dbl>
1     7  1.50
2     3  6.30