当我将因子转换为数字或整数时,我得到的是底层的级别代码,而不是数字形式的值。
f <- factor(sample(runif(5), 20, replace = TRUE))
## [1] 0.0248644019011408 0.0248644019011408 0.179684827337041
## [4] 0.0284090070053935 0.363644931698218 0.363644931698218
## [7] 0.179684827337041 0.249704354675487 0.249704354675487
## [10] 0.0248644019011408 0.249704354675487 0.0284090070053935
## [13] 0.179684827337041 0.0248644019011408 0.179684827337041
## [16] 0.363644931698218 0.249704354675487 0.363644931698218
## [19] 0.179684827337041 0.0284090070053935
## 5 Levels: 0.0248644019011408 0.0284090070053935 ... 0.363644931698218
as.numeric(f)
## [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2
as.integer(f)
## [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2
我不得不求助于粘贴来获得实际值:
as.numeric(paste(f))
## [1] 0.02486440 0.02486440 0.17968483 0.02840901 0.36364493 0.36364493
## [7] 0.17968483 0.24970435 0.24970435 0.02486440 0.24970435 0.02840901
## [13] 0.17968483 0.02486440 0.17968483 0.36364493 0.24970435 0.36364493
## [19] 0.17968483 0.02840901
有没有更好的方法将因数转换为数字?
最简单的方法是使用包varhandle中的unfactor函数,它可以接受一个因子向量,甚至一个数据帧:
unfactor(your_factor_variable)
下面这个例子可以作为一个快速的开始:
x <- rep(c("a", "b", "c"), 20)
y <- rep(c(1, 1, 0), 20)
class(x) # -> "character"
class(y) # -> "numeric"
x <- factor(x)
y <- factor(y)
class(x) # -> "factor"
class(y) # -> "factor"
library(varhandle)
x <- unfactor(x)
y <- unfactor(y)
class(x) # -> "character"
class(y) # -> "numeric"
你也可以在数据框架上使用它。例如虹膜数据集:
sapply(iris, class)
萼片。花萼长度。宽度花瓣。花瓣长度。宽度的物种
"数字" "数字" "数字" "因素"
# load the package
library("varhandle")
# pass the iris to unfactor
tmp_iris <- unfactor(iris)
# check the classes of the columns
sapply(tmp_iris, class)
萼片。花萼长度。宽度花瓣。花瓣长度。宽度的物种
"数字" "数字" "数字" "字符"
# check if the last column is correctly converted
tmp_iris$Species
[1] "setosa" "setosa" "setosa" "setosa" "setosa"
[6] "setosa" "setosa" "setosa" "setosa" "setosa"
[11] "setosa" "setosa" "setosa" "setosa" "setosa"
[16] "setosa" "setosa" "setosa" "setosa" "setosa"
[21] "setosa" "setosa" "setosa" "setosa" "setosa"
[26] "setosa" "setosa" "setosa" "setosa" "setosa"
[31] "setosa" "setosa" "setosa" "setosa" "setosa"
[36] "setosa" "setosa" "setosa" "setosa" "setosa"
[41] "setosa" "setosa" "setosa" "setosa" "setosa"
[46] "setosa" "setosa" "setosa" "setosa" "setosa"
[51] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[56] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[61] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[66] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[71] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[76] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[81] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[86] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[91] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[96] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
[101] "virginica" "virginica" "virginica" "virginica" "virginica"
[106] "virginica" "virginica" "virginica" "virginica" "virginica"
[111] "virginica" "virginica" "virginica" "virginica" "virginica"
[116] "virginica" "virginica" "virginica" "virginica" "virginica"
[121] "virginica" "virginica" "virginica" "virginica" "virginica"
[126] "virginica" "virginica" "virginica" "virginica" "virginica"
[131] "virginica" "virginica" "virginica" "virginica" "virginica"
[136] "virginica" "virginica" "virginica" "virginica" "virginica"
[141] "virginica" "virginica" "virginica" "virginica" "virginica"
[146] "virginica" "virginica" "virginica" "virginica" "virginica"
参见?factor的警告部分:
特别地,作为。数值应用于
一个因素是没有意义的,而且可能
通过隐性胁迫发生。来
将因子f变换为
近似于它原来的数值
值,如.numeric(levels(f))[f]是
推荐,稍微多一点
效率比
as.numeric (as.character (f))。
R的常见问题解答也有类似的建议。
为什么as.numeric(levels(f))[f]比as.numeric(as.character(f))更有效?
As.numeric (as.character(f))实际上是As.numeric (levels(f)[f]),因此您是在长度(x)值上执行到numeric的转换,而不是在nlevels(x)值上执行转换。速度的差异将是最明显的长向量与很少的水平。如果这些值都是唯一的,那么在速度上就不会有太大的差异。无论您如何进行转换,该操作都不太可能成为代码中的瓶颈,因此不必过于担心。
一些时间
library(microbenchmark)
microbenchmark(
as.numeric(levels(f))[f],
as.numeric(levels(f)[f]),
as.numeric(as.character(f)),
paste0(x),
paste(x),
times = 1e5
)
## Unit: microseconds
## expr min lq mean median uq max neval
## as.numeric(levels(f))[f] 3.982 5.120 6.088624 5.405 5.974 1981.418 1e+05
## as.numeric(levels(f)[f]) 5.973 7.111 8.352032 7.396 8.250 4256.380 1e+05
## as.numeric(as.character(f)) 6.827 8.249 9.628264 8.534 9.671 1983.694 1e+05
## paste0(x) 7.964 9.387 11.026351 9.956 10.810 2911.257 1e+05
## paste(x) 7.965 9.387 11.127308 9.956 11.093 2419.458 1e+05