如何转换numpy。对象的Datetime64。datetime(或Timestamp)?

在下面的代码中,我创建了一个datetime、timestamp和datetime64对象。

import datetime
import numpy as np
import pandas as pd
dt = datetime.datetime(2012, 5, 1)
# A strange way to extract a Timestamp object, there's surely a better way?
ts = pd.DatetimeIndex([dt])[0]
dt64 = np.datetime64(dt)

In [7]: dt
Out[7]: datetime.datetime(2012, 5, 1, 0, 0)

In [8]: ts
Out[8]: <Timestamp: 2012-05-01 00:00:00>

In [9]: dt64
Out[9]: numpy.datetime64('2012-05-01T01:00:00.000000+0100')

注意:从Timestamp中很容易得到datetime:

In [10]: ts.to_datetime()
Out[10]: datetime.datetime(2012, 5, 1, 0, 0)

但是我们如何从numpy中提取datetime或Timestamp。datetime64 (dt64) ?

.

更新:在我的数据集中有一个有点讨厌的例子(也许是激励的例子)似乎是:

dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100')

它应该是datetime。datetime(2002,6,28,1,0),而不是long (!) (1025222400000000000L)…


当前回答

你可以用pd。时间戳的构造函数。下面的图表可能对这个问题和相关问题有用。

其他回答

实际上,所有这些datetime类型都很困难,而且可能存在问题(必须仔细跟踪时区信息)。以下是我所做的,尽管我承认我担心至少有一部分是“非设计”的。此外,这可以根据需要做得更紧凑一些。 从numpy开始。datetime64 dt_a:

dt_a

numpy.datetime64 (2015 - 04 - 24 - t23:11:26.270000 - 0700)

dt_a1 = dt_a.tolist() #生成UTC格式的datetime对象,但不包含tzinfo dt_a1

datetime.datetime(2015, 4, 25, 6, 11, 26, 270000)

# now, make your "aware" datetime:

dt_a2=datetime.datetime(*list(dt_a1.timetuple()[:6]) + [dt_a1.microsecond], tzinfo=pytz.timezone('UTC'))

... 当然,也可以根据需要压缩成一行。

这篇文章已经写了4年了,我仍然在这个转换问题上挣扎——所以在某种意义上,这个问题在2017年仍然很活跃。numpy文档没有提供简单的转换算法,这让我有些震惊,但那是另一回事了。

I have come across another way to do the conversion that only involves modules numpy and datetime, it does not require pandas to be imported which seems to me to be a lot of code to import for such a simple conversion. I noticed that datetime64.astype(datetime.datetime) will return a datetime.datetime object if the original datetime64 is in micro-second units while other units return an integer timestamp. I use module xarray for data I/O from Netcdf files which uses the datetime64 in nanosecond units making the conversion fail unless you first convert to micro-second units. Here is the example conversion code,

import numpy as np
import datetime

def convert_datetime64_to_datetime( usert: np.datetime64 )->datetime.datetime:
    t = np.datetime64( usert, 'us').astype(datetime.datetime)
return t

它只在我的机器上测试过,我的机器是Python 3.6,最近发布了2017年Anaconda发行版。我只看了标量转换,没有检查基于数组的转换,尽管我猜它会很好。我也没有查看numpy datetime64源代码,看看这个操作是否有意义。

欢迎来到地狱。

你可以将datetime64对象传递给pandas。时间戳:

In [16]: Timestamp(numpy.datetime64('2012-05-01T01:00:00.000000'))
Out[16]: <Timestamp: 2012-05-01 01:00:00>

我注意到这在NumPy 1.6.1中并不能正常工作:

numpy.datetime64('2012-05-01T01:00:00.000000+0100')

同时,熊猫。To_datetime可以使用(这是开发版本之外的,还没有检查v0.9.1):

In [24]: pandas.to_datetime('2012-05-01T01:00:00.000000+0100')
Out[24]: datetime.datetime(2012, 5, 1, 1, 0, tzinfo=tzoffset(None, 3600))

我是这样做的

import pandas as pd

# Custom function to convert Pandas Datetime to Timestamp
def toTimestamp(data):
    return data.timestamp()

# Read a csv file
df = pd.read_csv("friends.csv")

# Replace the "birthdate" column by:
# 1. Transform to datetime
# 2. Apply the custom function to the column just converted
df["birthdate"] = pd.to_datetime(df["birthdate"]).apply(toTimestamp)
>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)

对于DatetimeIndex, tolist返回一个datetime对象列表。对于单个datetime64对象,它返回单个datetime对象。