如何转换numpy。对象的Datetime64。datetime(或Timestamp)?

在下面的代码中,我创建了一个datetime、timestamp和datetime64对象。

import datetime
import numpy as np
import pandas as pd
dt = datetime.datetime(2012, 5, 1)
# A strange way to extract a Timestamp object, there's surely a better way?
ts = pd.DatetimeIndex([dt])[0]
dt64 = np.datetime64(dt)

In [7]: dt
Out[7]: datetime.datetime(2012, 5, 1, 0, 0)

In [8]: ts
Out[8]: <Timestamp: 2012-05-01 00:00:00>

In [9]: dt64
Out[9]: numpy.datetime64('2012-05-01T01:00:00.000000+0100')

注意:从Timestamp中很容易得到datetime:

In [10]: ts.to_datetime()
Out[10]: datetime.datetime(2012, 5, 1, 0, 0)

但是我们如何从numpy中提取datetime或Timestamp。datetime64 (dt64) ?

.

更新:在我的数据集中有一个有点讨厌的例子(也许是激励的例子)似乎是:

dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100')

它应该是datetime。datetime(2002,6,28,1,0),而不是long (!) (1025222400000000000L)…


当前回答

>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)

对于DatetimeIndex, tolist返回一个datetime对象列表。对于单个datetime64对象,它返回单个datetime对象。

其他回答

>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)

对于DatetimeIndex, tolist返回一个datetime对象列表。对于单个datetime64对象,它返回单个datetime对象。

如果你想将整个pandas日期时间序列转换为常规的python日期时间,你也可以使用.to_pydatetime()。

pd.date_range('20110101','20110102',freq='H').to_pydatetime()

> [datetime.datetime(2011, 1, 1, 0, 0) datetime.datetime(2011, 1, 1, 1, 0)
   datetime.datetime(2011, 1, 1, 2, 0) datetime.datetime(2011, 1, 1, 3, 0)
   ....

它还支持时区:

pd.date_range('20110101','20110102',freq='H').tz_localize('UTC').tz_convert('Australia/Sydney').to_pydatetime()

[ datetime.datetime(2011, 1, 1, 11, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
 datetime.datetime(2011, 1, 1, 12, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
....

注意:如果你操作的是Pandas系列,你不能在整个系列上调用to_pydatetime()。你需要在每个单独的datetime64上调用.to_pydatetime(),使用一个列表理解或类似的东西:

datetimes = [val.to_pydatetime() for val in df.problem_datetime_column]

一个选项是使用str,然后使用to_datetime(或类似的方法):

In [11]: str(dt64)
Out[11]: '2012-05-01T01:00:00.000000+0100'

In [12]: pd.to_datetime(str(dt64))
Out[12]: datetime.datetime(2012, 5, 1, 1, 0, tzinfo=tzoffset(None, 3600))

注意:它不等于dt,因为它变成了“偏移感知”:

In [13]: pd.to_datetime(str(dt64)).replace(tzinfo=None)
Out[13]: datetime.datetime(2012, 5, 1, 1, 0)

这似乎很不优雅。

.

更新:这可以处理“讨厌的例子”:

In [21]: dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100')

In [22]: pd.to_datetime(str(dt64)).replace(tzinfo=None)
Out[22]: datetime.datetime(2002, 6, 28, 1, 0)
import numpy as np
import pandas as pd 

def np64toDate(np64):
    return pd.to_datetime(str(np64)).replace(tzinfo=None).to_datetime()

使用此函数获取python的原生datetime对象

一些解决方案很适合我,但numpy将弃用一些参数。 对我来说,更好的解决方案是将日期读取为pandas datetime,并明确地提取pandas对象的年、月和日。 下面的代码适用于最常见的情况。

def format_dates(dates):
    dt = pd.to_datetime(dates)
    try: return [datetime.date(x.year, x.month, x.day) for x in dt]    
    except TypeError: return datetime.date(dt.year, dt.month, dt.day)