如何转换numpy。对象的Datetime64。datetime(或Timestamp)?

在下面的代码中,我创建了一个datetime、timestamp和datetime64对象。

import datetime
import numpy as np
import pandas as pd
dt = datetime.datetime(2012, 5, 1)
# A strange way to extract a Timestamp object, there's surely a better way?
ts = pd.DatetimeIndex([dt])[0]
dt64 = np.datetime64(dt)

In [7]: dt
Out[7]: datetime.datetime(2012, 5, 1, 0, 0)

In [8]: ts
Out[8]: <Timestamp: 2012-05-01 00:00:00>

In [9]: dt64
Out[9]: numpy.datetime64('2012-05-01T01:00:00.000000+0100')

注意:从Timestamp中很容易得到datetime:

In [10]: ts.to_datetime()
Out[10]: datetime.datetime(2012, 5, 1, 0, 0)

但是我们如何从numpy中提取datetime或Timestamp。datetime64 (dt64) ?

.

更新:在我的数据集中有一个有点讨厌的例子(也许是激励的例子)似乎是:

dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100')

它应该是datetime。datetime(2002,6,28,1,0),而不是long (!) (1025222400000000000L)…


当前回答

>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)

对于DatetimeIndex, tolist返回一个datetime对象列表。对于单个datetime64对象,它返回单个datetime对象。

其他回答

我已经无数次地回到这个答案,所以我决定拼凑一个快速的小类,它将Numpy datetime64值转换为Python datetime值。我希望这能帮助到其他人。

from datetime import datetime
import pandas as pd

class NumpyConverter(object):
    @classmethod
    def to_datetime(cls, dt64, tzinfo=None):
        """
        Converts a Numpy datetime64 to a Python datetime.
        :param dt64: A Numpy datetime64 variable
        :type dt64: numpy.datetime64
        :param tzinfo: The timezone the date / time value is in
        :type tzinfo: pytz.timezone
        :return: A Python datetime variable
        :rtype: datetime
        """
        ts = pd.to_datetime(dt64)
        if tzinfo is not None:
            return datetime(ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second, tzinfo=tzinfo)
        return datetime(ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second)

我要把它放在我的工具箱里,直觉告诉我我还会用到它。

欢迎来到地狱。

你可以将datetime64对象传递给pandas。时间戳:

In [16]: Timestamp(numpy.datetime64('2012-05-01T01:00:00.000000'))
Out[16]: <Timestamp: 2012-05-01 01:00:00>

我注意到这在NumPy 1.6.1中并不能正常工作:

numpy.datetime64('2012-05-01T01:00:00.000000+0100')

同时,熊猫。To_datetime可以使用(这是开发版本之外的,还没有检查v0.9.1):

In [24]: pandas.to_datetime('2012-05-01T01:00:00.000000+0100')
Out[24]: datetime.datetime(2012, 5, 1, 1, 0, tzinfo=tzoffset(None, 3600))
>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)

对于DatetimeIndex, tolist返回一个datetime对象列表。对于单个datetime64对象,它返回单个datetime对象。

转换numpy。datetime64 to datetime对象,在numpy-1.8上表示UTC时间:

>>> from datetime import datetime
>>> import numpy as np
>>> dt = datetime.utcnow()
>>> dt
datetime.datetime(2012, 12, 4, 19, 51, 25, 362455)
>>> dt64 = np.datetime64(dt)
>>> ts = (dt64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's')
>>> ts
1354650685.3624549
>>> datetime.utcfromtimestamp(ts)
datetime.datetime(2012, 12, 4, 19, 51, 25, 362455)
>>> np.__version__
'1.8.0.dev-7b75899'

上面的例子假设天真的datetime对象由np解释。datetime64作为UTC时间。


将datetime转换为np。Datetime64和返回(numpy-1.6):

>>> np.datetime64(datetime.utcnow()).astype(datetime)
datetime.datetime(2012, 12, 4, 13, 34, 52, 827542)

它对单个np都有效。对象和np.datetime64的numpy数组。

想想np。datetime64与np.int8、np.int16等相同,并应用相同的方法在Python对象(如int、datetime和相应的numpy对象)之间进行转换。

你的“讨厌的例子”是正确的:

>>> from datetime import datetime
>>> import numpy 
>>> numpy.datetime64('2002-06-28T01:00:00.000000000+0100').astype(datetime)
datetime.datetime(2002, 6, 28, 0, 0)
>>> numpy.__version__
'1.6.2' # current version available via pip install numpy

我可以在安装的numpy-1.8.0上重新生成long值:

pip install git+https://github.com/numpy/numpy.git#egg=numpy-dev

同样的例子:

>>> from datetime import datetime
>>> import numpy
>>> numpy.datetime64('2002-06-28T01:00:00.000000000+0100').astype(datetime)
1025222400000000000L
>>> numpy.__version__
'1.8.0.dev-7b75899'

它返回long,因为对于numpy。datetime64类型.astype(datetime)等价于.astype(object),在numpy-1.8上返回Python整数(long)。

要获取datetime对象,可以:

>>> dt64.dtype
dtype('<M8[ns]')
>>> ns = 1e-9 # number of seconds in a nanosecond
>>> datetime.utcfromtimestamp(dt64.astype(int) * ns)
datetime.datetime(2002, 6, 28, 0, 0)

获取直接使用秒的datetime64:

>>> dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100', 's')
>>> dt64.dtype
dtype('<M8[s]')
>>> datetime.utcfromtimestamp(dt64.astype(int))
datetime.datetime(2002, 6, 28, 0, 0)

numpy文档说datetime API是实验性的,在未来的numpy版本中可能会改变。

如果你想将整个pandas日期时间序列转换为常规的python日期时间,你也可以使用.to_pydatetime()。

pd.date_range('20110101','20110102',freq='H').to_pydatetime()

> [datetime.datetime(2011, 1, 1, 0, 0) datetime.datetime(2011, 1, 1, 1, 0)
   datetime.datetime(2011, 1, 1, 2, 0) datetime.datetime(2011, 1, 1, 3, 0)
   ....

它还支持时区:

pd.date_range('20110101','20110102',freq='H').tz_localize('UTC').tz_convert('Australia/Sydney').to_pydatetime()

[ datetime.datetime(2011, 1, 1, 11, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
 datetime.datetime(2011, 1, 1, 12, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
....

注意:如果你操作的是Pandas系列,你不能在整个系列上调用to_pydatetime()。你需要在每个单独的datetime64上调用.to_pydatetime(),使用一个列表理解或类似的东西:

datetimes = [val.to_pydatetime() for val in df.problem_datetime_column]