在Java中,IoC / DI是一种非常常见的实践,广泛应用于web应用程序、几乎所有可用的框架和Java EE中。另一方面,也有很多大型的Python web应用程序,但除了Zope(我听说它的编码真的很糟糕)之外,IoC在Python世界中似乎并不常见。(如果你认为我是错的,请举一些例子)。

当然,有一些流行的Java IoC框架的克隆可用于Python,例如springpython。但它们似乎都没有被实际使用。至少,我从来没有碰到过Django或sqlalchemy+<插入您最喜欢的wsgi工具箱在这里>的基于web应用程序使用类似的东西。

在我看来,IoC有合理的优势,可以很容易地取代django-default-user-model,但在Python中广泛使用接口类和IoC看起来有点奇怪,而且不»pythonic«。但是也许有人有更好的解释,为什么IoC在Python中没有被广泛使用。


当前回答

我的观点是,在大多数Python应用程序中,您不需要它,即使您需要它,许多讨厌Java的人(以及自认为是开发人员的无能的摆弄者)很可能认为它很糟糕,只是因为它在Java中很受欢迎。

An IoC system is actually useful when you have complex networks of objects, where each object may be a dependency for several others and, in turn, be itself a dependant on other objects. In such a case you'll want to define all these objects once and have a mechanism to put them together automatically, based on as many implicit rules as possible. If you also have configuration to be defined in a simple way by the application user/administrator, that's an additional reason to desire an IoC system that can read its components from something like a simple XML file (which would be the configuration).

典型的Python应用程序要简单得多,只有一堆脚本,没有这么复杂的体系结构。就我个人而言,我知道IoC实际上是什么(与那些在这里写下某些答案的人相反),在我有限的Python经验中,我从来没有觉得需要它(而且我不会在任何地方都使用Spring,当它所提供的优势不足以证明它的开发开销时)。

也就是说,在Python中,IoC方法实际上是有用的,事实上,我在这里读到Django使用了它。

上述相同的推理可以应用于Java世界中的面向方面编程,不同的是,AOP真正有价值的情况的数量甚至更有限。

其他回答

部分原因是模块系统在Python中的工作方式。你可以免费获得一种“单例”,只需从模块中导入它。在模块中定义一个对象的实际实例,然后任何客户端代码都可以导入它,并实际获得一个工作的、完全构造/填充的对象。

这与Java相反,在Java中不导入对象的实际实例。这意味着你总是必须自己实例化它们(或使用某种IoC/DI风格的方法)。您可以通过使用静态工厂方法(或实际的工厂类)来减轻必须自己实例化所有东西的麻烦,但这样您仍然会产生每次实际创建新方法的资源开销。

不像Java中的强类型。Python的duck类型行为使得传递对象非常容易。

Java开发人员专注于构造类结构和对象之间的关系,同时保持灵活性。IoC对于实现这一目标非常重要。

Python开发人员专注于完成工作。他们只是在需要的时候把类连接起来。他们甚至不用担心课程的类型。只要它会嘎嘎叫,它就是鸭子!这种性质没有给国际奥委会留下任何余地。

Haven't used Python in several years, but I would say that it has more to do with it being a dynamically typed language than anything else. For a simple example, in Java, if I wanted to test that something wrote to standard out appropriately I could use DI and pass in any PrintStream to capture the text being written and verify it. When I'm working in Ruby, however, I can dynamically replace the 'puts' method on STDOUT to do the verify, leaving DI completely out of the picture. If the only reason I'm creating an abstraction is to test the class that's using it (think File system operations or the clock in Java) then DI/IoC creates unnecessary complexity in the solution.

Django很好地利用了反转控制。例如,由配置文件选择数据库服务器,然后框架向数据库客户机提供适当的数据库包装器实例。

区别在于Python有第一类类型。数据类型(包括类)本身就是对象。如果您想要使用特定的类,只需命名类即可。例如:

if config_dbms_name == 'postgresql':
    import psycopg
    self.database_interface = psycopg
elif config_dbms_name == 'mysql':
    ...

之后的代码可以通过以下方式创建数据库接口:

my_db_connection = self.database_interface()
# Do stuff with database.

与Java和c++需要的样板工厂函数不同,Python只需要一两行普通代码就可以完成。这就是函数式编程与命令式编程的优势所在。

看看FastAPI,它内置了依赖注入。例如:

from fastapi import Depends, FastAPI

async def get_db():
    db = DBSession()
    try:
        yield db
    except Exception:
        db.rollback()
        raise
    finally:
        db.close()

app = FastAPI()

@app.get("/items")
def get_items(db=Depends(get_db)):
    return db.get_items()