我在python pandas DataFrame中有一个列,具有布尔True/False值,但对于进一步的计算,我需要1/0表示。有没有一种快速的熊猫/numpy方法来做到这一点?


当前回答

在Python中True为1,同样False为0*:

>>> True == 1
True
>>> False == 0
True

你应该能够对它们执行任何你想要的操作,只要把它们当作数字来对待,因为它们就是数字:

>>> issubclass(bool, int)
True
>>> True * 5
5

所以回答你的问题,不需要工作,你已经有了你要找的东西。

*注意我使用is作为一个英语单词,而不是Python关键字is - True将不会是与任何随机1相同的对象。

其他回答

我必须将FAKE/REAL映射到0/1,但找不到正确的答案。

请在下面找到如何将列名'type'的值为FAKE/REAL映射为0/1(注意:类似的可以应用于任何列名和值)

df.loc[df['type'] == 'FAKE', 'type'] = 0
df.loc[df['type'] == 'REAL', 'type'] = 1

使用系列。转换布尔值到整数的视图:

df["somecolumn"] = df["somecolumn"].view('i1')

将布尔值的单列转换为整数1或0的列的简洁方法:

df["somecolumn"] = df["somecolumn"].astype(int)

这是一个基于现有答案的可重复的例子:

import pandas as pd


def bool_to_int(s: pd.Series) -> pd.Series:
    """Convert the boolean to binary representation, maintain NaN values."""
    return s.replace({True: 1, False: 0})


# generate a random dataframe
df = pd.DataFrame({"a": range(10), "b": range(10, 0, -1)}).assign(
    a_bool=lambda df: df["a"] > 5,
    b_bool=lambda df: df["b"] % 2 == 0,
)

# select all bool columns (or specify which cols to use)
bool_cols = [c for c, d in df.dtypes.items() if d == "bool"]

# apply the new coding to a new dataframe (or can replace the existing one)
df_new = df.assign(**{c: lambda df: df[c].pipe(bool_to_int) for c in bool_cols})

在Python中True为1,同样False为0*:

>>> True == 1
True
>>> False == 0
True

你应该能够对它们执行任何你想要的操作,只要把它们当作数字来对待,因为它们就是数字:

>>> issubclass(bool, int)
True
>>> True * 5
5

所以回答你的问题,不需要工作,你已经有了你要找的东西。

*注意我使用is作为一个英语单词,而不是Python关键字is - True将不会是与任何随机1相同的对象。