给定一个像[1,2,3,4,5,6]这样的数字列表,我如何编写代码将它们相乘,即计算1*2*3*4*5*6?
当前回答
这是我的机器的一些性能测量。适用于长时间运行的循环中的小输入:
import functools, operator, timeit
import numpy as np
def multiply_numpy(iterable):
return np.prod(np.array(iterable))
def multiply_functools(iterable):
return functools.reduce(operator.mul, iterable)
def multiply_manual(iterable):
prod = 1
for x in iterable:
prod *= x
return prod
sizesToTest = [5, 10, 100, 1000, 10000, 100000]
for size in sizesToTest:
data = [1] * size
timerNumpy = timeit.Timer(lambda: multiply_numpy(data))
timerFunctools = timeit.Timer(lambda: multiply_functools(data))
timerManual = timeit.Timer(lambda: multiply_manual(data))
repeats = int(5e6 / size)
resultNumpy = timerNumpy.timeit(repeats)
resultFunctools = timerFunctools.timeit(repeats)
resultManual = timerManual.timeit(repeats)
print(f'Input size: {size:>7d} Repeats: {repeats:>8d} Numpy: {resultNumpy:.3f}, Functools: {resultFunctools:.3f}, Manual: {resultManual:.3f}')
结果:
Input size: 5 Repeats: 1000000 Numpy: 4.670, Functools: 0.586, Manual: 0.459
Input size: 10 Repeats: 500000 Numpy: 2.443, Functools: 0.401, Manual: 0.321
Input size: 100 Repeats: 50000 Numpy: 0.505, Functools: 0.220, Manual: 0.197
Input size: 1000 Repeats: 5000 Numpy: 0.303, Functools: 0.207, Manual: 0.185
Input size: 10000 Repeats: 500 Numpy: 0.265, Functools: 0.194, Manual: 0.187
Input size: 100000 Repeats: 50 Numpy: 0.266, Functools: 0.198, Manual: 0.185
您可以看到,Numpy在较小的输入上要慢得多,因为它在执行乘法之前分配一个数组。另外,要注意Numpy中的溢出。
其他回答
简单的方法是:
import numpy as np
np.exp(np.log(your_array).sum())
Python 3:使用functools.reduce:
>>> from functools import reduce
>>> reduce(lambda x, y: x*y, [1, 2, 3, 4, 5, 6])
720
Python 2:使用reduce:
>>> reduce(lambda x, y: x*y, [1, 2, 3, 4, 5, 6])
720
为了兼容2和3,请使用Six (pip install Six),然后:
>>> from six.moves import reduce
>>> reduce(lambda x, y: x*y, [1,2,3,4,5,6])
720
这是我的机器的一些性能测量。适用于长时间运行的循环中的小输入:
import functools, operator, timeit
import numpy as np
def multiply_numpy(iterable):
return np.prod(np.array(iterable))
def multiply_functools(iterable):
return functools.reduce(operator.mul, iterable)
def multiply_manual(iterable):
prod = 1
for x in iterable:
prod *= x
return prod
sizesToTest = [5, 10, 100, 1000, 10000, 100000]
for size in sizesToTest:
data = [1] * size
timerNumpy = timeit.Timer(lambda: multiply_numpy(data))
timerFunctools = timeit.Timer(lambda: multiply_functools(data))
timerManual = timeit.Timer(lambda: multiply_manual(data))
repeats = int(5e6 / size)
resultNumpy = timerNumpy.timeit(repeats)
resultFunctools = timerFunctools.timeit(repeats)
resultManual = timerManual.timeit(repeats)
print(f'Input size: {size:>7d} Repeats: {repeats:>8d} Numpy: {resultNumpy:.3f}, Functools: {resultFunctools:.3f}, Manual: {resultManual:.3f}')
结果:
Input size: 5 Repeats: 1000000 Numpy: 4.670, Functools: 0.586, Manual: 0.459
Input size: 10 Repeats: 500000 Numpy: 2.443, Functools: 0.401, Manual: 0.321
Input size: 100 Repeats: 50000 Numpy: 0.505, Functools: 0.220, Manual: 0.197
Input size: 1000 Repeats: 5000 Numpy: 0.303, Functools: 0.207, Manual: 0.185
Input size: 10000 Repeats: 500 Numpy: 0.265, Functools: 0.194, Manual: 0.187
Input size: 100000 Repeats: 50 Numpy: 0.266, Functools: 0.198, Manual: 0.185
您可以看到,Numpy在较小的输入上要慢得多,因为它在执行乘法之前分配一个数组。另外,要注意Numpy中的溢出。
只想添加一个Python 3.8的一行回答:
def multiply(l):
return [b := 1, [b := b * a for a in l]][-1][-1]
print(multiply([2, 3, 8, 10]))
输出:
480
解释:
[b:= 1,用于定义临时变量。 ...[b:= b * a for a in l]用于遍历列表并将b乘以每个元素 ...[1][1]是因为最终名单[b, [b * l [0], b * l[1],…, b * l[-1]]]。所以最后位置的元素是列表中所有元素的乘积。
我个人喜欢这样一个函数,它将泛型列表的所有元素相乘:
def multiply(n):
total = 1
for i in range(0, len(n)):
total *= n[i]
print total
它很紧凑,使用简单的东西(一个变量和一个for循环),对我来说感觉很直观(它看起来像我想到的问题,只是取一个,乘以它,然后乘以下一个,等等!)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录