我尝试了python请求库文档中提供的示例。
使用async.map(rs),我获得了响应代码,但我想获得所请求的每个页面的内容。例如,这是行不通的:
out = async.map(rs)
print out[0].content
我尝试了python请求库文档中提供的示例。
使用async.map(rs),我获得了响应代码,但我想获得所请求的每个页面的内容。例如,这是行不通的:
out = async.map(rs)
print out[0].content
当前回答
不幸的是,据我所知,请求库不具备执行异步请求的能力。您可以在请求周围包装async/await语法,但这将使底层请求的同步性不会降低。如果您想要真正的异步请求,则必须使用其他提供异步请求的工具。其中一个解决方案是aiohttp (Python 3.5.3+)。根据我在Python 3.7 async/await语法中使用它的经验,它工作得很好。下面我写了执行n个web请求的三个实现
使用Python请求库的纯同步请求(sync_requests_get_all) 同步请求(async_requests_get_all),使用Python 3.7中包装的Python请求库async/await语法和asyncio 一个真正的异步实现(async_aiohttp_get_all), Python aiohttp库封装在Python 3.7 async/await语法和asyncio中
"""
Tested in Python 3.5.10
"""
import time
import asyncio
import requests
import aiohttp
from asgiref import sync
def timed(func):
"""
records approximate durations of function calls
"""
def wrapper(*args, **kwargs):
start = time.time()
print('{name:<30} started'.format(name=func.__name__))
result = func(*args, **kwargs)
duration = "{name:<30} finished in {elapsed:.2f} seconds".format(
name=func.__name__, elapsed=time.time() - start
)
print(duration)
timed.durations.append(duration)
return result
return wrapper
timed.durations = []
@timed
def sync_requests_get_all(urls):
"""
performs synchronous get requests
"""
# use session to reduce network overhead
session = requests.Session()
return [session.get(url).json() for url in urls]
@timed
def async_requests_get_all(urls):
"""
asynchronous wrapper around synchronous requests
"""
session = requests.Session()
# wrap requests.get into an async function
def get(url):
return session.get(url).json()
async_get = sync.sync_to_async(get)
async def get_all(urls):
return await asyncio.gather(*[
async_get(url) for url in urls
])
# call get_all as a sync function to be used in a sync context
return sync.async_to_sync(get_all)(urls)
@timed
def async_aiohttp_get_all(urls):
"""
performs asynchronous get requests
"""
async def get_all(urls):
async with aiohttp.ClientSession() as session:
async def fetch(url):
async with session.get(url) as response:
return await response.json()
return await asyncio.gather(*[
fetch(url) for url in urls
])
# call get_all as a sync function to be used in a sync context
return sync.async_to_sync(get_all)(urls)
if __name__ == '__main__':
# this endpoint takes ~3 seconds to respond,
# so a purely synchronous implementation should take
# little more than 30 seconds and a purely asynchronous
# implementation should take little more than 3 seconds.
urls = ['https://postman-echo.com/delay/3']*10
async_aiohttp_get_all(urls)
async_requests_get_all(urls)
sync_requests_get_all(urls)
print('----------------------')
[print(duration) for duration in timed.durations]
在我的机器上,这是输出:
async_aiohttp_get_all started
async_aiohttp_get_all finished in 3.20 seconds
async_requests_get_all started
async_requests_get_all finished in 30.61 seconds
sync_requests_get_all started
sync_requests_get_all finished in 30.59 seconds
----------------------
async_aiohttp_get_all finished in 3.20 seconds
async_requests_get_all finished in 30.61 seconds
sync_requests_get_all finished in 30.59 seconds
其他回答
上面的答案都没有帮助我,因为他们假设你有一个预定义的请求列表,而在我的情况下,我需要能够侦听请求和异步响应(类似于它在nodejs中的工作方式)。
def handle_finished_request(r, **kwargs):
print(r)
# while True:
def main():
while True:
address = listen_to_new_msg() # based on your server
# schedule async requests and run 'handle_finished_request' on response
req = grequests.get(address, timeout=1, hooks=dict(response=handle_finished_request))
job = grequests.send(req) # does not block! for more info see https://stackoverflow.com/a/16016635/10577976
main()
handle_finished_request回调函数将在收到响应时被调用。注意:由于某些原因,超时(或无响应)在这里不会触发错误
这个简单的循环可以触发异步请求,类似于它在nodejs服务器中的工作方式
我赞同上述使用HTTPX的建议,但我经常以不同的方式使用它,所以我补充了我的答案。
我个人使用asyncio.run(在Python 3.7中引入)而不是asyncio。收集,也更喜欢aiostream方法,它可以与asyncio和httpx结合使用。
就像我刚刚发布的这个例子一样,这种风格对于异步处理一组url很有帮助,尽管(常见的)错误发生了。我特别喜欢这种风格如何阐明响应处理发生在哪里,以及如何简化错误处理(我发现异步调用倾向于提供更多的错误处理)。
发布一个简单的异步发出一堆请求的例子更容易,但通常您还想处理响应内容(用它计算一些东西,可能引用您请求的URL要处理的原始对象)。
这种方法的核心是:
async with httpx.AsyncClient(timeout=timeout) as session:
ws = stream.repeat(session)
xs = stream.zip(ws, stream.iterate(urls))
ys = stream.starmap(xs, fetch, ordered=False, task_limit=20)
process = partial(process_thing, things=things, pbar=pbar, verbose=verbose)
zs = stream.map(ys, process)
return await zs
地点:
Process_thing是一个异步响应内容处理函数 things是输入列表(URL字符串的URL生成器来自于此),例如对象/字典列表 Pbar是一个进度条(例如tqdm.tqdm)[可选但有用]
所有这些都放在一个async_fetch_urlset异步函数中,然后通过调用一个名为fetch_things的同步“顶级”函数来运行,该函数运行协程[这是async函数返回的内容]并管理事件循环:
def fetch_things(urls, things, pbar=None, verbose=False):
return asyncio.run(async_fetch_urlset(urls, things, pbar, verbose))
由于作为输入传递的列表(这里是things)可以就地修改,因此可以有效地获得返回的输出(就像我们从同步函数调用中习惯的那样)
我已经使用python请求异步调用github的gist API有一段时间了。
举个例子,请看下面的代码:
https://github.com/davidthewatson/flasgist/blob/master/views.py#L60-72
这种风格的python可能不是最清晰的例子,但我可以向您保证代码是有效的。如果这让你感到困惑,请告诉我,我会记录下来。
也许请求-期货是另一种选择。
from requests_futures.sessions import FuturesSession
session = FuturesSession()
# first request is started in background
future_one = session.get('http://httpbin.org/get')
# second requests is started immediately
future_two = session.get('http://httpbin.org/get?foo=bar')
# wait for the first request to complete, if it hasn't already
response_one = future_one.result()
print('response one status: {0}'.format(response_one.status_code))
print(response_one.content)
# wait for the second request to complete, if it hasn't already
response_two = future_two.result()
print('response two status: {0}'.format(response_two.status_code))
print(response_two.content)
办公文档中也有建议。如果你不想卷入gevent,这是一个不错的选择。
from threading import Thread
threads=list()
for requestURI in requests:
t = Thread(target=self.openURL, args=(requestURI,))
t.start()
threads.append(t)
for thread in threads:
thread.join()
...
def openURL(self, requestURI):
o = urllib2.urlopen(requestURI, timeout = 600)
o...