Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?
当前回答
在诸如PTVS、PyCharm、Wing assert isinstance()等IDE中,可以使用isinstance语句对一些不清楚的对象启用代码补全。
其他回答
是否存在性能问题?
Please remember to "make it work first before you make it work fast". Very few percent of any program are usually relevant for its speed. You can always kick out or simplify an assert if it ever proves to be a performance problem -- and most of them never will. Be pragmatic: Assume you have a method that processes a non-empty list of tuples and the program logic will break if those tuples are not immutable. You should write: def mymethod(listOfTuples): assert(all(type(tp)==tuple for tp in listOfTuples)) This is probably fine if your lists tend to be ten entries long, but it can become a problem if they have a million entries. But rather than discarding this valuable check entirely you could simply downgrade it to def mymethod(listOfTuples): assert(type(listOfTuples[0])==tuple) # in fact _all_ must be tuples! which is cheap but will likely catch most of the actual program errors anyway.
assert的四个目的
假设您与四位同事Alice、Bernd、Carl和Daphne一起处理20万行代码。 他们喊你的代码,你喊他们的代码。
那么assert有四个角色:
Inform Alice, Bernd, Carl, and Daphne what your code expects. Assume you have a method that processes a list of tuples and the program logic can break if those tuples are not immutable: def mymethod(listOfTuples): assert(all(type(tp)==tuple for tp in listOfTuples)) This is more trustworthy than equivalent information in the documentation and much easier to maintain. Inform the computer what your code expects. assert enforces proper behavior from the callers of your code. If your code calls Alices's and Bernd's code calls yours, then without the assert, if the program crashes in Alices code, Bernd might assume it was Alice's fault, Alice investigates and might assume it was your fault, you investigate and tell Bernd it was in fact his. Lots of work lost. With asserts, whoever gets a call wrong, they will quickly be able to see it was their fault, not yours. Alice, Bernd, and you all benefit. Saves immense amounts of time. Inform the readers of your code (including yourself) what your code has achieved at some point. Assume you have a list of entries and each of them can be clean (which is good) or it can be smorsh, trale, gullup, or twinkled (which are all not acceptable). If it's smorsh it must be unsmorshed; if it's trale it must be baludoed; if it's gullup it must be trotted (and then possibly paced, too); if it's twinkled it must be twinkled again except on Thursdays. You get the idea: It's complicated stuff. But the end result is (or ought to be) that all entries are clean. The Right Thing(TM) to do is to summarize the effect of your cleaning loop as assert(all(entry.isClean() for entry in mylist)) This statements saves a headache for everybody trying to understand what exactly it is that the wonderful loop is achieving. And the most frequent of these people will likely be yourself. Inform the computer what your code has achieved at some point. Should you ever forget to pace an entry needing it after trotting, the assert will save your day and avoid that your code breaks dear Daphne's much later.
在我看来,assert的两个文档目的(1和3)和 保障措施(2和4)同样有价值。 告知人民甚至可能比告知计算机更有价值 因为它可以防止assert要捕捉的错误(在情况1中) 无论如何,接下来还有很多错误。
当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:
class LessThanZeroException(Exception):
pass
class variable(object):
def __init__(self, value=0):
self.__x = value
def __set__(self, obj, value):
if value < 0:
raise LessThanZeroException('x is less than zero')
self.__x = value
def __get__(self, obj, objType):
return self.__x
class MyClass(object):
x = variable()
>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "my.py", line 7, in __set__
raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero
"assert"语句在编译优化时被删除。所以,是的,它们在性能和功能上都有差异。
在编译时请求优化时,当前代码生成器不会为assert语句生成代码。Python 3 Docs
如果您使用assert来实现应用程序功能,然后优化部署到生产环境,那么您将受到“但它在开发中有效”缺陷的困扰。
参见PYTHONOPTIMIZE和-O -OO
如前所述,当您的代码should NOT到达某个点(意味着那里存在错误)时,应该使用断言。在我看来,使用断言最有用的原因可能是不变量/前置/后置条件。在循环或函数的每次迭代的开始或结束时,这些必须为真。
例如,一个递归函数(两个独立的函数,一个处理错误的输入,另一个处理错误的代码,因为它很难与递归区分开来)。如果我忘记写if语句,这将很明显地显示出哪里出了问题。
def SumToN(n):
if n <= 0:
raise ValueError, "N must be greater than or equal to 0"
else:
return RecursiveSum(n)
def RecursiveSum(n):
#precondition: n >= 0
assert(n >= 0)
if n == 0:
return 0
return RecursiveSum(n - 1) + n
#postcondition: returned sum of 1 to n
这些循环不变量通常可以用断言表示。
推荐文章
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?
- 为什么出现这个UnboundLocalError(闭包)?
- 使用Python请求的异步请求
- 如何检查一个对象是否是python中的生成器对象?
- 如何从Python包内读取(静态)文件?
- 如何计算一个逻辑sigmoid函数在Python?
- python: SyntaxError: EOL扫描字符串文字