如何计算谷歌地图V3中两个标记之间的距离?(类似于inV2的distanceFrom函数。)
谢谢. .
如何计算谷歌地图V3中两个标记之间的距离?(类似于inV2的distanceFrom函数。)
谢谢. .
当前回答
不得不这么做……动作脚本方式
//just make sure you pass a number to the function because it would accept you mother in law...
public var rad = function(x:*) {return x*Math.PI/180;}
protected function distHaversine(p1:Object, p2:Object):Number {
var R:int = 6371; // earth's mean radius in km
var dLat:Number = rad(p2.lat() - p1.lat());
var dLong:Number = rad(p2.lng() - p1.lng());
var a:Number = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(rad(p1.lat())) * Math.cos(rad(p2.lat())) * Math.sin(dLong/2) * Math.sin(dLong/2);
var c:Number = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d:Number = R * c;
return d;
}
其他回答
对于谷歌,你可以使用球面api, google.maps.geometry. sphere.computedistancebetween (latLngA, latLngB);
然而,如果球面投影或哈弗辛解的精度对你来说不够精确(例如,如果你靠近极点或计算更长的距离),你应该使用不同的库。
关于这个主题的大部分信息我都是在维基百科上找到的。
要查看任何给定算法的精度是否足够,一个技巧是填充地球的最大和最小半径,并查看差异是否会给您的用例带来问题。更多细节可以在本文中找到
最后,谷歌api或haversine将毫无问题地满足大多数目的。
不得不这么做……动作脚本方式
//just make sure you pass a number to the function because it would accept you mother in law...
public var rad = function(x:*) {return x*Math.PI/180;}
protected function distHaversine(p1:Object, p2:Object):Number {
var R:int = 6371; // earth's mean radius in km
var dLat:Number = rad(p2.lat() - p1.lat());
var dLong:Number = rad(p2.lng() - p1.lng());
var a:Number = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(rad(p1.lat())) * Math.cos(rad(p2.lat())) * Math.sin(dLong/2) * Math.sin(dLong/2);
var c:Number = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d:Number = R * c;
return d;
}
//p1 and p2 are google.maps.LatLng(x,y) objects
function calcDistance(p1, p2) {
var d = (google.maps.geometry.spherical.computeDistanceBetween(p1, p2) / 1000).toFixed(2);
console.log(d);
}
在我的情况下,这是最好的计算在SQL Server,因为我想采取当前位置,然后搜索所有邮政编码从当前位置一定距离内。我还有一个数据库,其中包含邮政编码及其纬度的列表。干杯
--will return the radius for a given number
create function getRad(@variable float)--function to return rad
returns float
as
begin
declare @retval float
select @retval=(@variable * PI()/180)
--print @retval
return @retval
end
go
--calc distance
--drop function dbo.getDistance
create function getDistance(@cLat float,@cLong float, @tLat float, @tLong float)
returns float
as
begin
declare @emr float
declare @dLat float
declare @dLong float
declare @a float
declare @distance float
declare @c float
set @emr = 6371--earth mean
set @dLat = dbo.getRad(@tLat - @cLat);
set @dLong = dbo.getRad(@tLong - @cLong);
set @a = sin(@dLat/2)*sin(@dLat/2)+cos(dbo.getRad(@cLat))*cos(dbo.getRad(@tLat))*sin(@dLong/2)*sin(@dLong/2);
set @c = 2*atn2(sqrt(@a),sqrt(1-@a))
set @distance = @emr*@c;
set @distance = @distance * 0.621371 -- i needed it in miles
--print @distance
return @distance;
end
go
--get all zipcodes within 2 miles, the hardcoded #'s would be passed in by C#
select *
from cityzips a where dbo.getDistance(29.76,-95.38,a.lat,a.long) <3
order by zipcode
离线解-哈弗辛算法
在Javascript中
var _eQuatorialEarthRadius = 6378.1370;
var _d2r = (Math.PI / 180.0);
function HaversineInM(lat1, long1, lat2, long2)
{
return (1000.0 * HaversineInKM(lat1, long1, lat2, long2));
}
function HaversineInKM(lat1, long1, lat2, long2)
{
var dlong = (long2 - long1) * _d2r;
var dlat = (lat2 - lat1) * _d2r;
var a = Math.pow(Math.sin(dlat / 2.0), 2.0) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r) * Math.pow(Math.sin(dlong / 2.0), 2.0);
var c = 2.0 * Math.atan2(Math.sqrt(a), Math.sqrt(1.0 - a));
var d = _eQuatorialEarthRadius * c;
return d;
}
var meLat = -33.922982;
var meLong = 151.083853;
var result1 = HaversineInKM(meLat, meLong, -32.236457779983745, 148.69094705162837);
var result2 = HaversineInKM(meLat, meLong, -33.609020205923713, 150.77061469270831);
C#
using System;
public class Program
{
public static void Main()
{
Console.WriteLine("Hello World");
var meLat = -33.922982;
double meLong = 151.083853;
var result1 = HaversineInM(meLat, meLong, -32.236457779983745, 148.69094705162837);
var result2 = HaversineInM(meLat, meLong, -33.609020205923713, 150.77061469270831);
Console.WriteLine(result1);
Console.WriteLine(result2);
}
static double _eQuatorialEarthRadius = 6378.1370D;
static double _d2r = (Math.PI / 180D);
private static int HaversineInM(double lat1, double long1, double lat2, double long2)
{
return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private static double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
}
参考: https://en.wikipedia.org/wiki/Great-circle_distance