为什么Java不支持无符号整数?
在我看来,这是一个奇怪的遗漏,因为它们允许人们编写不太可能在意外的大输入上产生溢出的代码。
此外,使用无符号整数可以是一种自我文档的形式,因为它们表明无符号整型所要保存的值永远不应该是负数。
最后,在某些情况下,无符号整数对于某些运算(如除法)更有效。
包含这些的缺点是什么?
为什么Java不支持无符号整数?
在我看来,这是一个奇怪的遗漏,因为它们允许人们编写不太可能在意外的大输入上产生溢出的代码。
此外,使用无符号整数可以是一种自我文档的形式,因为它们表明无符号整型所要保存的值永远不应该是负数。
最后,在某些情况下,无符号整数对于某些运算(如除法)更有效。
包含这些的缺点是什么?
当前回答
我知道这个帖子太老了;但是,在Java 8及以后版本中,您可以使用int数据类型来表示无符号32位整数,其最小值为0,最大值为232−1。使用Integer类使用int数据类型作为无符号整数,并且像compareUnsigned(), divideUnsigned()等静态方法已经添加到Integer类中,以支持无符号整数的算术操作。
其他回答
在“C”规范中,有一些因实用主义原因而被Java抛弃的珍宝,但随着开发人员的需求(闭包等),它们正在慢慢地回归。
我提到第一个是因为它和这个讨论有关;指针值对无符号整数算术的坚持。并且,与这个主题相关的是,在Java的Signed世界中维护Unsigned语义的困难。
我猜如果有人让Dennis Ritchie的另一个自我来建议Gosling的设计团队,他会建议给Signed's一个“无穷大的零”,这样所有的地址偏移请求都会先加上他们的algeaic RING SIZE来消除负值。
这样,向数组抛出的任何偏移量都不会生成SEGFAULT。例如,在一个封装类中,我称之为RingArray的双精度对象需要unsigned行为-在“自旋转循环”上下文中:
// ...
// Housekeeping state variable
long entrycount; // A sequence number
int cycle; // Number of loops cycled
int size; // Active size of the array because size<modulus during cycle 0
int modulus; // Maximal size of the array
// Ring state variables
private int head; // The 'head' of the Ring
private int tail; // The ring iterator 'cursor'
// tail may get the current cursor position
// and head gets the old tail value
// there are other semantic variations possible
// The Array state variable
double [] darray; // The array of doubles
// somewhere in constructor
public RingArray(int modulus) {
super();
this.modulus = modulus;
tail = head = cycle = 0;
darray = new double[modulus];
// ...
}
// ...
double getElementAt(int offset){
return darray[(tail+modulus+offset%modulus)%modulus];
}
// remember, the above is treating steady-state where size==modulus
// ...
上面的RingArray永远不会从负索引中“获得”,即使恶意请求者试图这样做。记住,还有许多合法的请求用于请求先前的(负的)索引值。
注意:外层%模数去掉了对合法请求的引用,而内部%模数掩盖了明显的恶意,因为负数比-模数更负。如果这将出现在Java +..9 || 8+…+ spec,那么问题将真正成为一个“程序员不能“自我旋转”的错误”。
我相信所谓的Java unsigned int“缺陷”可以用上面的一行程序来弥补。
PS:只是为了给上面的RingArray管理提供上下文,这里有一个候选的'set'操作来匹配上面的'get'元素操作:
void addElement(long entrycount,double value){ // to be called only by the keeper of entrycount
this.entrycount= entrycount;
cycle = (int)entrycount/modulus;
if(cycle==0){ // start-up is when the ring is being populated the first time around
size = (int)entrycount; // during start-up, size is less than modulus so use modulo size arithmetic
tail = (int)entrycount%size; // during start-up
}
else {
size = modulus;
head = tail;
tail = (int)entrycount%modulus; // after start-up
}
darray[head] = value; // always overwrite old tail
}
这是一个古老的问题,pat确实简单地提到了char,我只是想我应该为其他人扩展这个问题,他们将在未来的道路上看到这个问题。让我们仔细看看Java的基本类型:
字节- 8位有符号整数
短16位有符号整数
Int - 32位有符号整数
长64位有符号整数
Char - 16位字符(无符号整数)
虽然char不支持无符号算术,但它本质上可以被视为无符号整数。您必须显式地将算术运算转换回char类型,但它确实提供了一种指定无符号数字的方法。
char a = 0;
char b = 6;
a += 1;
a = (char) (a * b);
a = (char) (a + b);
a = (char) (a - 16);
b = (char) (b % 3);
b = (char) (b / a);
//a = -1; // Generates complier error, must be cast to char
System.out.println(a); // Prints ?
System.out.println((int) a); // Prints 65532
System.out.println((short) a); // Prints -4
short c = -4;
System.out.println((int) c); // Prints -4, notice the difference with char
a *= 2;
a -= 6;
a /= 3;
a %= 7;
a++;
a--;
是的,没有对无符号整数的直接支持(显然,如果有直接支持,我就不必将大部分操作转换回char类型)。但是,肯定存在无符号基元数据类型。我也希望看到一个无符号字节,但我猜加倍内存成本,而不是使用char是一个可行的选择。
Edit
JDK8为Long和Integer提供了新的api,在将Long和int值作为无符号值处理时提供了辅助方法。
compareUnsigned divideUnsigned parseUnsignedInt parseUnsignedLong remainderUnsigned toUnsignedLong toUnsignedString
此外,Guava提供了许多帮助器方法来处理整数类型,这有助于弥补由于缺乏对无符号整数的本机支持而留下的空白。
http://skeletoncoder.blogspot.com/2006/09/java-tutorials-why-no-unsigned.html
这个家伙说,因为C标准定义了包含无符号整型和有符号整型的操作被视为无符号整型。这可能导致负符号整数滚动到一个大的无符号整数,可能会导致错误。
I once took a C++ course with someone on the C++ standards committee who implied that Java made the right decision to avoid having unsigned integers because (1) most programs that use unsigned integers can do just as well with signed integers and this is more natural in terms of how people think, and (2) using unsigned integers results in lots easy to create but difficult to debug issues such as integer arithmetic overflow and losing significant bits when converting between signed and unsigned types. If you mistakenly subtract 1 from 0 using signed integers it often more quickly causes your program to crash and makes it easier to find the bug than if it wraps around to 2^32 - 1, and compilers and static analysis tools and runtime checks have to assume you know what you're doing since you chose to use unsigned arithmetic. Also, negative numbers like -1 can often represent something useful, like a field being ignored/defaulted/unset while if you were using unsigned you'd have to reserve a special value like 2^32 - 1 or something similar.
Long ago, when memory was limited and processors did not automatically operate on 64 bits at once, every bit counted a lot more, so having signed vs unsigned bytes or shorts actually mattered a lot more often and was obviously the right design decision. Today just using a signed int is more than sufficient in almost all regular programming cases, and if your program really needs to use values bigger than 2^31 - 1, you often just want a long anyway. Once you're into the territory of using longs, it's even harder to come up with a reason why you really can't get by with 2^63 - 1 positive integers. Whenever we go to 128 bit processors it'll be even less of an issue.
我能想到一个不幸的副作用。在java嵌入式数据库中,使用32位id字段可以拥有的id数量是2^31,而不是2^32(~ 20亿,而不是~ 40亿)。